Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 40.2 Discovery guide
Recall.
A matrix is
self-adjoint if
\begin{equation*}
\inprod{\uvec{u}}{A \uvec{v}} = \inprod{A \uvec{u}}{\uvec{v}}
\end{equation*}
always, so that
\(\adjoint{A} = A\text{.}\)
A matrix is
product-preserving (or
orthogonal in the real case,
unitary in the complex case) if
\begin{equation*}
\inprod{A \uvec{u}}{A \uvec{v}} = \inprod{\uvec{u}}{\uvec{v}}
\end{equation*}
always, so that
\(\adjoint{A}A = I\text{.}\)
Notation.
Where necessary, in this discovery guide we will write
\begin{align*}
\amp {\inprod{\blank}{\blank}}_{\R} \text{,} \amp
\amp {\inprod{\blank}{\blank}}_{\C}
\end{align*}
to distinguish between the real and complex dot products, respectively.
Discovery 40.1 . Hermitian eigenvalues.
Suppose \(H\) is a Hermitian (i.e. complex self-adjoint) matrix and \(\lambda\) and \(\uvec{x}\) are an eigenvalue-eigenvector pair for \(H\text{,}\) so that
\begin{equation*}
H\uvec{x} = \lambda \uvec{x} \text{.}
\end{equation*}
Use
\begin{equation*}
{\inprod{\uvec{x}}{H \uvec{x}}}_{\C} = {\inprod{H \uvec{x}}{\uvec{x}}}_{\C}
\end{equation*}
to discover something about \(\lambda\text{.}\)
Discovery 40.2 . Symmetric eigenvalues.
Convince yourself that a real self-adjoint matrix is also self-adjoint when considered as a complex matrix.
Based on
Discovery 40.1 , what does this mean about the eigenvalues of a symmetric matrix?
Discovery 40.3 .
The Hermitian matrix
\begin{equation*}
H = \begin{abmatrix}{rcc} 0 \amp \ci \amp 0 \\ -\ci \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \end{abmatrix}
\end{equation*}
has eigenvalues \(\lambda = \pm 1\) with
\begin{align*}
E_{-1}(H) \amp = \Span \left\{
\begin{abmatrix}{r} -\ci \\ 1 \\ 0 \end{abmatrix}
\right\} \text{,}
\amp
E_1(H) \amp = \Span \left\{
\begin{bmatrix} \ci \\ 1 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\right\} \text{.}
\end{align*}
(a)
Write down a transition matrix
\(P\) so that
\(\inv{P} H P\) is diagonal.
(b)
Write down a
unitary transition matrix
\(U\) so that
\(\adjoint{U} H U\) is diagonal.
Hint .
Also remember that the complex dot product involves a conjugate.
(c)
What relationship between the provided eigenvectors of
\(H\) was crucial to allowing
Task b to work?
What if the two provided eigenvectors for
\(\lambda = 1\) had not initially had that relationship with each other — would you have been able to “fix” it? How?
Discovery 40.4 .
The complex matrix
\begin{equation*}
A =
\begin{abmatrix}{rrc}
1 \amp 0 \amp 0 \\
-2 \ci \amp -1 \amp 0 \\
-2 \amp 2 \ci \amp 1
\end{abmatrix}
\end{equation*}
has eigenvalues \(\lambda = \pm 1\) with
\begin{align*}
E_{-1}(A) \amp = \Span \left\{
\begin{bmatrix} 0 \\ \ci \\ 1 \end{bmatrix}
\right\} \text{,}
\amp
E_1(A) \amp = \Span \left\{
\begin{bmatrix} \ci \\ 1 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\right\} \text{.}
\end{align*}
(a)
Write down a transition matrix
\(P\) so that
\(\inv{P} A P\) is diagonal.
(b)
Will you be able to write down a
unitary transition matrix
\(U\) so that
\(\adjoint{U} A U\) is diagonal? Will trying to “fix” things as in
Task c of
Discovery 40.3 work?
Hint .
The columns of
\(U\) must be eigenvectors to diagonalize
\(A\text{!}\)
Discovery 40.5 .
Suppose
\(H\) is a Hermitian matrix,
\(\lambda_1,\lambda_2\) are two
different eigenvalues for
\(H\text{,}\) and
\(\uvec{x}_1,\uvec{x}_2\) are corresponding eigenvectors for those two eigenvalues, respectively.
(a)
Obtain an expression for
\(\inprod{H \uvec{x}_1}{\uvec{x}_2}\) in terms of
\(\lambda_1\) and
\(\inprod{\uvec{x}_1}{\uvec{x}_2}\text{.}\)
(b)
Use the fact that
\(H\) is self-adjoint to obtain an expression for
\(\inprod{H \uvec{x}_1}{\uvec{x}_2}\) in terms of
\(\lambda_2\) and
\(\inprod{\uvec{x}_1}{\uvec{x}_2}\text{.}\)
Hint .
You may wish to make use of the property of eigenvalues of Hermitian matrices found in
Discovery 40.1 .
(c)
By comparing your two expressions for
\(\inprod{H \uvec{x}_1}{\uvec{x}_2}\text{,}\) use the assumption that
\(\lambda_1 \neq \lambda_2\) to learn something about the eigenvectors
\(\uvec{x}_1,\uvec{x}_2\text{.}\)
Discovery 40.6 .
Determine a unitary matrix \(U\) so that \(\adjoint{U} A U\) is diagonal, for matrix
\begin{equation*}
A = \begin{bmatrix} 2 \amp 0 \\ 0 \amp \ci \end{bmatrix} \text{.}
\end{equation*}
What is the point of this discovery activity?
Discovery 40.7 .
(a)
Convince yourself that a diagonal complex matrix
\(D\) commutes with its adjoint:
\(\adjoint{D} D = D \adjoint{D}\text{.}\)
(b)
Suppose
\(A\) is a
unitarily diagonalizable complex matrix, so that
\(\adjoint{U} A U\) is diagonal for some unitary matrix
\(U\text{.}\)
Use the diagonal case from
Task a to help verify that
\(A\) commutes with its adjoint:
\(\adjoint{A} A = A \adjoint{A}\text{.}\)
(c)
What do you think is the point of this discovery activity?
Discovery 40.8 . Unitary eigenvalues.
Suppose \(A\) is a unitary complex matrix and \(\lambda\) and \(\uvec{x}\) are an eigenvalue-eigenvector pair for \(A\text{,}\) so that
\begin{equation*}
A\uvec{x} = \lambda \uvec{x} \text{.}
\end{equation*}
Use
\begin{equation*}
{\inprod{A \uvec{x}}{A \uvec{x}}}_{\C} = {\inprod{\uvec{x}}{\uvec{x}}}_{\C}
\end{equation*}
to discover something about \(\lambda\text{.}\)
Discovery 40.9 . Orthogonal eigenvalues.
Convince yourself that a real orthogonal matrix is also unitary when considered as a complex matrix.
Based on
Discovery 40.8 , what does this mean about the eigenvalues of an orthogonal matrix?