Section 3.3 Terminology and notation
- Vandermonde matrix
-
an \(m \times n\) matrix where the entries in each row form a sequence \(1,x_i,x_i^2,x_i^3,\dotsc,x_i^n\) for some number \(x_i\text{,}\) so that the full matrix has form
\begin{equation*} \begin{bmatrix} 1 \amp x_1 \amp x_1^2 \amp \cdots \amp x_1^n \\ 1 \amp x_2 \amp x_2^2 \amp \cdots \amp x_2^n \\ \vdots \amp \vdots \amp \vdots \amp \amp \vdots \\ 1 \amp x_m \amp x_m^2 \amp \cdots \amp x_m^n \end{bmatrix} \end{equation*}