Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 31.1 Discovery guide
Discovery 31.1 .
(a)
Consider the polynomial
\(p(x) = x^2 - 3x + 6\text{.}\) What should
\(p(A)\) mean when
\(A\) is a square matrix?
(b)
Using the polynomial
\(p(x)\) from
Task a , verify that
\(p(\inv{P} A P) = \inv{P} \bigl(p(A)\bigr) P\) will be true for all square matrices
\(A\text{.}\)
Will the same be true if we use a different polynomial?
Describe the pattern of what you’ve discovered using the words
similar and
polynomial .
(c)
Determine a pattern to quickly calculate
\(p(D)\) when
\(D\) is diagonal that works for every polynomial
\(p(x)\text{.}\)
Now repeat for block-diagonal.
Discovery 31.2 .
Consider the scalar-triangular matrix
\begin{equation*}
S = \begin{bmatrix}
5 \amp a \amp b \\
0 \amp 5 \amp c \\
0 \amp 0 \amp 5
\end{bmatrix}\text{.}
\end{equation*}
(a)
What are the eigenvalues of
\(S\text{?}\) What are their algebraic multiplicities? (You should be able to determine this just by inspection.)
(b)
Write the characteristic polynomial
\(c_S(\lambda)\) in fully factored form. (Using your answers
Task a , you should be able to do this without any calculation.)
(c)
Compute
\(c_S(S)\) using your factored form of
\(c_S(\lambda)\) from
Task b .
Discovery 31.3 .
If \(S\) is a matrix in scalar-triangular form with eigenvalue \(\lambda = \lambda_0\) repeated down the diagonal, then \(\lambda I - S\) will have form like
\begin{align*}
N_2 \amp = \begin{bmatrix} 0 \amp \ast \\ 0 \amp 0 \end{bmatrix} \text{,} \amp
N_3 \amp = \begin{bmatrix} 0 \amp \ast \amp \ast \\ 0 \amp 0 \amp \ast \\ 0 \amp 0 \amp 0 \end{bmatrix} \text{,} \amp
N_4 \amp = \begin{bmatrix} 0 \amp \ast \amp \ast \amp \ast \\ 0 \amp 0 \amp \ast \amp \ast \\ 0 \amp 0 \amp 0 \amp \ast \\ 0 \amp 0 \amp 0 \amp 0 \end{bmatrix} \text{,}
\end{align*}
or similarly for larger sizes.
(a)
Compute power
\(N_2^2\text{.}\)
Compute powers
\(N_3^2\text{,}\) \(N_3^3\text{.}\)
Compute powers
\(N_4^2\text{,}\) \(N_4^3\text{,}\) \(N_4^4\text{.}\)
(b)
What are the eigenvalues of each of
\(N_2\text{,}\) \(N_3\text{,}\) \(N_4\text{?}\) What are the algebraic multiplicities of these eigenvalues?
What is the characteristic polynomial of each of
\(N_2\text{,}\) \(N_3\text{,}\) \(N_4\text{?}\)
Discovery 31.4 .
\begin{equation*}
T = \begin{abmatrix}{rrrrr}
5 \amp \ast \amp \ast \\
0 \amp 5 \amp \ast \\
0 \amp 0 \amp 5 \\
\amp \amp \amp -1 \amp \ast \\
\amp \amp \amp 0 \amp -1
\end{abmatrix}
\end{equation*}
in place of \(S\text{,}\) treating the \(\ast\) entries as “don’t care” values.
Discovery 31.5 .
Based on
Discovery 31.4 , make a conjecture about the relationship between a matrix
\(A\) and its characteristic polynomial
\(c_A(\lambda)\text{.}\) In doing this, you should consider the following:
Discovery 31.6 .
Again, for this discovery activity you should keep in mind that if we work over
\(\C\text{,}\) then
every matrix is similar to one in triangular block form (
Theorem 30.5.1 ).
(a)
Make a conjecture about the relationship between the eigenvalues and the determinant of a matrix.
(b)
Make a conjecture about the relationship between the eigenvalues and the
trace of a matrix.
(c)
The characteristic polynomial of a matrix always factors (over \(\C\) ) as
\begin{gather}
c(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dotsm (\lambda - \lambda_\ell)^{m_\ell}\text{,}\tag{✶}
\end{gather}
where the \(\lambda_j\) are the eigenvalues of the matrix and the \(m_j\) are the corresponding algebraic multiplicities.
If you were to expand the characteristic polynomial out completely again, what would the constant term be? Can you make a connection between this pattern and that of
Task a ?
(d)
Similar to
Task c , if you were to expand the characteristic polynomial in
(✶) out completely again, what would the coefficient on the
\(\lambda^{n-1}\) term be? Can you make a connection between this pattern and that of
Task b ?