Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 44.1 Discovery guide
Discovery 44.1 .
Let \(\funcdef{T}{\poly_3(\R)}{\matrixring_2(\R)}\) and \(\funcdef{S}{\matrixring_2(\R)}{\R^1}\) be defined by
\begin{align*}
T(a x^3 + b x^2 + c x + d) \amp = \begin{bmatrix} a + b \amp b + c \\ c + d \amp d - a \end{bmatrix} \text{,} \amp
S\left(\begin{bmatrix} a \amp b \\ c \amp d \end{bmatrix}\right)
\amp = a + d\text{.}
\end{align*}
(a)
Are
\(T\) and
\(S\) linear?
(b)
What are the domain and the codomain of the
composite transformation \(S \circ T\text{?}\)
(c)
Compute a general input-output formula for
\(S \circ T\) similar to the formulas for
\(S\) and
\(T\) defined above.
(d)
Discovery 44.2 .
Verify that if
\(\funcdef{T}{U}{V}\) and
\(\funcdef{S}{V}{W}\) are linear, then
\(\funcdef{S \circ T}{U}{W}\) is also linear.
Discovery 44.3 .
Consider matrix transformations \(\funcdef{T_A}{\R^3}{\R^2}\) and \(\funcdef{S_B}{\R^2}{\R^4}\) corresponding to matrices
\begin{align*}
A \amp = \begin{abmatrix}{rcr}
1 \amp 2 \amp -1 \\
-1 \amp 3 \amp 1
\end{abmatrix}
\text{,}
\amp
B \amp = \begin{abmatrix}{rcr}
1 \amp 1 \\
2 \amp -2 \\
-3 \amp 4 \\
0 \amp 5
\end{abmatrix}\text{.}
\end{align*}
(a)
How should an image vector
\((S_B \circ T_A)(\uvec{x})\) be computed?
(b)
Corollary 42.5.4 says that every transformation
\(\R^3 \to \R^4\) is a matrix transformation. Based on the pattern in
Task a , what is the matrix of the composite transformation
\(S_B \circ T_A\text{?}\)
(c) Describe the pattern.
In words: The standard matrix of a composition of matrix transformations is
.
In symbols: For
\(\funcdef{T}{\R^n}{\R^m}\) and
\(\funcdef{S}{\R^m}{\R^\ell}\text{,}\) \(\stdmatrixOf{S \circ T} = \fillinmath{XXXXXXXXXX} \text{.}\)
Notation.
In analogy with the pattern of
Task c of
Discovery 44.3 , we will use multiplication notation
\(S T\) in place of composite function notation
\(S \circ T\) for
all linear transformations.
Discovery 44.4 .
Let \(\uppermatring_2(\R)\) represent the space of \(2 \times 2\) upper triangular matrices, and let
\begin{align*}
\amp \funcdef{T}{\poly_2(\R)}{\matrixring_2(\R)} \text{,} \amp
\amp \funcdef{S}{\uppermatring_2(\R)}{\poly_2(\R)}
\end{align*}
be defined by
\begin{gather*}
T(a x^2 + b x + c) = \begin{bmatrix} a + b \amp b + c \\ 0 \amp c \end{bmatrix}
\text{,}\\
S\left(\begin{bmatrix} a \amp b \\ 0 \amp c \end{bmatrix}\right)
= (a - b + c) x^2 + (b - c) x + c\text{.}
\end{gather*}
(a)
Compute an input-output formula similar to those above for the composite transformation
\(S T\text{.}\)
(b)
Based on your result in
Task a , what should we call
\(S\) relative to
\(T\text{?}\)
(c)
Does it work the other way? Compute an input-output formula for the composite transformation
\(T S\text{.}\)
(d)
Would
Task c have worked if
\(S\) used the same
output formula, but was defined as a transformation
\(\funcdef{S}{\matrixring_2(\R)}{\poly_2(\R)}\text{?}\) Say, as
\begin{equation*}
S\left(\begin{bmatrix} a \amp b \\ z \amp c \end{bmatrix}\right)
= (a - b + c) x^2 + (b - c) x + c\text{?}
\end{equation*}
(e) Describe the pattern.
If
\(T\) is an
invertible linear transformation, the domain of
\(\inv{T}\) should be
.
Discovery 44.5 .
Consider \(\funcdef{T}{\poly_2(\R)}{\matrixring_2(\R)}\) defined by
\begin{equation*}
T(a x^2 + b x + c) = \begin{bmatrix} 0 \amp a + b + c \\ 0 \amp 0 \end{bmatrix} \text{.}
\end{equation*}
(a)
Based on the pattern from
Task e of
Discovery 44.4 , if
\(T\) is invertible, what should the domain of
\(\inv{T}\) be?
(b)
Is
\(T\) invertible? To decide, try to define an input-output formula for
\(\funcdef{\inv{T}}{D}{\poly_2(\R)}\) (where
\(D\) is the domain for
\(\inv{T}\) that you identified in
Task a ) so that your formula “reverses”
\(T\text{,}\) just as
\(S\) reversed the transformation
\(T\) in
Discovery 44.4 .
(c)
Compute the image vectors
\(T(x^2)\) and
\(T(1)\text{.}\)
What do the results say about the potential invertibility of
\(T\text{?}\)
(d)
Compute the image vector
\(T(x^2 - 1) \) (and compare with
Task c ).
What does the result say about the potential invertibility of
\(T\text{?}\)
(e) Describe the pattern.
If a transformation
\(\funcdef{T}{V}{W}\) is invertible, then the kernel of
\(T\) must be
.
So
\(\nullity T\) must be
and then
\(\rank T\) must be
.
Discovery 44.6 .
(a)
Based on
Task e of
Discovery 44.5 , could a transformation
\(\funcdef{T}{\matrixring_5(\R)}{\R^5}\) be invertible?
(b) Describe the pattern.
If a transformation
\(\funcdef{T}{V}{W}\) is invertible, then
\(\dim V\) and
\(\dim W\) must satisfy:
.
Discovery 44.7 .
Consider matrix transformation \(\funcdef{T_A}{\R^3}{\R^3}\) corresponding to matrix
\begin{equation*}
A = \begin{abmatrix}{ccr}
1 \amp 2 \amp -1 \\
0 \amp 3 \amp 1 \\
0 \amp 1 \amp 2
\end{abmatrix}\text{.}
\end{equation*}
(a)
Assuming
\(T_A\) is invertible, what must the domain of
\(\inv{T}_A\) be?
(b)
Corollary 42.5.4 says that every transformation
\(\R^3 \to \R^3\) is a matrix transformation. Based on the calculation patterns from
Discovery 44.4 , we should have
\((\inv{T}_A T_A)(\uvec{x}) = \uvec{x}\) for
every \(\uvec{x}\) in
\(\R^3\text{.}\)
So what matrix should correspond to
\(\inv{T}_A\text{?}\)
(c) Describe the pattern.
In words: The standard matrix of the inverse of a (square) matrix transformation is
.
In symbols: For invertible
\(\funcdef{T}{\R^n}{\R^n}\text{,}\) \(\stdmatrixOf{\inv{T}} = \fillinmath{XXXXX}\text{.}\)
An
isomorphism is an invertible linear transformation whose image is the whole codomain space.
Discovery 44.8 .
In each of the following, provide a specific example of an isomorphism
\(\funcdef{T}{V}{\R^n}\) for a specific value of
\(n\text{.}\) In each case, are there multiple values of
\(n\) for which this is achievable?
(a)
\(V = \matrixring_2(\R)\text{.}\)
(b)
\(V = \uppermatring_2(\R)\text{.}\)
(c)
\(V = \poly_3(\R)\text{.}\)
(d)
\(V = \poly_2(\R)\text{.}\)
(e)
\(V = \Span \{ \sin x, \cos x, e^x \}\) (as a subspace of
\(F(\R)\) ).
It’s likely that all of your examples followed the same simple pattern of turning the inputs into outputs — what previous course concept were you using (even if unknowingly)?