Skip to main content

Section 11.3 Examples

Subsection 11.3.1 Complex linear systems

Linear systems with complex coefficients behave exactly the same as systems with real coefficients.

Example 11.3.1. Turning a complex linear system into an augmented complex matrix.

Consider the system

\begin{equation*} \begin{array}{rcrcr} (1 - \ci) x \amp - \amp 4 y \amp = \amp -3 + 9 \ci \\ (2 + \ci) x \amp + \amp (1 - 2 \ci) y \amp = \amp -5 \ci \end{array}. \end{equation*}

As usual, we can represent this system as an augmented matrix, with one row per equation and one column per variable, with an extra augmented column for the constants on the right of the equals signs.

\begin{equation*} \left[\begin{array}{cc|c} 1 - \ci \amp -4 \amp -3 + 9 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right]. \end{equation*}
Example 11.3.2. Reducing a complex augmented matrix.

Here we will reduce the augmented matrix for the system from Example 11.3.1. There are always multiple ways to reduce a matrix, but, as usual, we are not interested in the most efficient way. Instead, we will demonstrate a systematic way to reduce while avoiding complicated calculations with complex numbers, especially division.

Rather than divide by a complex number to obtain a leading one in the top left, we start by using the complex conjugate to first convert the upper left entry to a real number. (For this particular matrix, we could achieve the same result by simply adding the second row to the first, but again we wish to demonstrate a systematic method in a simple example.)

\begin{equation*} \left[\begin{array}{cc|c} 1 - \ci \amp -4 \amp -3 + 9 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right] \begin{matrix} (1 + \ci) R_1 \\ \phantom{x} \end{matrix} \longrightarrow \left[\begin{array}{cc|c} 2 \amp -4 - 4 \ci \amp -12 + 6 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right] \end{equation*}

Now we can easily obtain a leading one by dividing by a real number.

\begin{equation*} \left[\begin{array}{cc|c} 2 \amp -4 - 4 \ci \amp -12 + 6 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right] \begin{matrix} \frac{1}{2} R_1 \\ \phantom{x} \end{matrix} \longrightarrow \left[\begin{array}{cc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right] \end{equation*}

Note that these first two operations together are equivalent to dividing the first row by \(1 - \ci\text{.}\)

Now use the leading one to eliminate just the real part of the entry below it.

\begin{equation*} \left[\begin{array}{cc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 2 + \ci \amp 1 - 2 \ci \amp -5 \ci \end{array}\right] \begin{matrix} \phantom{x} \\ R_2 - 2 R_1 \end{matrix} \longrightarrow \left[\begin{array}{cc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ \ci \amp 5 + 2 \ci \amp 12 - 11 \ci \end{array}\right] \end{equation*}

Then convert the leading entry in the second row to a real number, by multiplying by \(\ci\text{.}\)

\begin{equation*} \left[\begin{array}{cc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ \ci \amp 5 + 2 \ci \amp 12 - 11 \ci \end{array}\right] \begin{matrix} \phantom{x} \\ \ci R_2 \end{matrix} \longrightarrow \left[\begin{array}{rc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ -1 \amp -2 + 5 \ci \amp 11 + 12 \ci \end{array}\right] \end{equation*}

Now we can easily eliminate the bottom left entry.

\begin{equation*} \left[\begin{array}{cc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ -1 \amp -2 + 5 \ci \amp 11 + 12 \ci \end{array}\right] \begin{matrix} \phantom{x} \\ R_2 + R_1 \end{matrix} \longrightarrow \left[\begin{array}{rc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 0 \amp -4 + 3 \ci \amp 5 + 15 \ci \end{array}\right] \end{equation*}

From here we proceed in a similar fashion to obtain and exploit the next leading one.

\begin{align*} \amp \left[\begin{array}{rc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 0 \amp -4 + 3 \ci \amp 5 + 15 \ci \end{array}\right] \begin{matrix} \phantom{x} \\ (-4 - 3\ci) R_2 \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{rc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 0 \amp 25 \amp 25 - 75 \ci \end{array}\right] \begin{matrix} \phantom{x} \\ \frac{1}{25} R_2 \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{rc|c} 1 \amp -2 - 2 \ci \amp -6 + 3 \ci \\ 0 \amp 1 \amp 1 - 3 \ci \end{array}\right] \begin{matrix} R_1 + 2R_2 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{rc|c} 1 \amp - 2 \ci \amp -4 - 3 \ci \\ 0 \amp 1 \amp 1 - 3 \ci \end{array}\right] \begin{matrix} \ci R_1 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{cc|c} \ci \amp 2 \amp 3 - 4 \ci \\ 0 \amp 1 \amp 1 - 3 \ci \end{array}\right] \begin{matrix} R_1 - 2R_2 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{cc|c} \ci \amp 0 \amp 1 + 2 \ci \\ 0 \amp 1 \amp 1 - 3 \ci \end{array}\right] \begin{matrix} (-\ci) R_1 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{rr|c} 1 \amp 0 \amp 2 - \ci \\ 0 \amp 1 \amp 1 - 3 \ci \end{array}\right] \end{align*}

From the reduced matrix, we can see that the original complex linear system has a unique solution, \(x = 2 - \ci\) and \(y = 1 - 3 \ci\text{.}\)

Example 11.3.3. Solving a complex linear system.

To solve a complex linear system we proceed just as in the real case, by reducing, assigning parameters (if necessary), and solving for each variable either exactly or in terms of the assigned parameters. The only difference is that parameters should be allowed to take on every possible complex value, instead of just every possible real value.

Suppose we have reduced the coefficient matrix for a homogeneous complex linear system, and have arrived at the RREF

\begin{equation*} \begin{bmatrix} 1 \amp 2 + 3 \ci \amp 0 \amp 1 - \ci \\ 0 \amp 0 \amp 1 \amp -2 + 2 \ci \\ 0 \amp 0 \amp 0 \amp 0 \end{bmatrix}\text{.} \end{equation*}

We have four variables, but only two leading ones, so we need two parameters. The variables \(x_2\) and \(x_4\) are free, so we should assign parameters to those and solve for the others. In parametric form, the general solution is

\begin{align*} x_1 \amp = (-2 - 3 \ci) s + (-1 + \ci) t \text{,} \amp x_2 \amp = s \text{,} \amp x_3 \amp = (2 - 2 \ci) t \text{,} \amp x_4 \amp = t \text{.} \end{align*}

Each different choice of a pair of complex values for parameters \(s\) and \(t\) leads to a different specific solution. With a homogeneous system, we still always have the trivial solution, \(x_1 = x_2 = x_3 = x_4 = 0\text{,}\) in this case associated to choice \(s = 0\text{,}\) \(t = 0\text{.}\)

We also have two specific solutions attached to each parameter, one from choosing \(s = 1\text{,}\) \(t = 0\) to obtain solution

\begin{align*} x_1 \amp = -2 - 3 \ci, \amp x_2 \amp = 1, \amp x_3 \amp = 0, \amp x_4 \amp = 0, \end{align*}

and another from choosing \(s = 0\text{,}\) \(t = 1\) to obtain solution

\begin{align*} x_1 \amp = -1 + \ci, \amp x_2 \amp = 0, \amp x_3 \amp = 2 - 2 \ci, \amp x_4 \amp = 1. \end{align*}

As mentioned at the beginning of this example, parameters \(s\) and \(t\) can take on any complex values. For example, choosing \(s = 7 \ci\) and \(t = 5 - 4 \ci\) yields particular solution

\begin{align*} x_1 \amp = 20 - 5 \ci, \amp x_2 \amp = 7 \ci, \amp x_3 \amp = 2 - 18 \ci, \amp x_4 \amp = 5 - 4 \ci. \end{align*}

Subsection 11.3.2 Complex matrices

The basic operations of matrix addition, subtraction, multiplication, and scalar multiplication all work the same for matrices with complex entries as for matrices with real entries, except that the computations become a little more involved.

We will concentrate here on a few examples involving inverses, the determinant, and the new conjugate and complex adjoint operations.

Subsubsection 11.3.2.1 Inverses

Example 11.3.4. Using the \(2 \times 2\) inversion formula.

Proposition 5.5.4 also applies to complex matrices.

For example, consider

\begin{equation*} A = \begin{bmatrix} 5 + 5 \ci \amp 1 + \ci \\ -1 + 5 \ci \amp \ci \end{bmatrix}. \end{equation*}

First, compute \(\det A\text{:}\)

\begin{equation*} \det A = (5 + 5 \ci) \cdot \ci - (1 + \ci) (-1 + 5 \ci) = 1 + \ci. \end{equation*}

Now, using the \(2 \times 2\) inversion formula, we have

\begin{align*} \inv{A} \amp = \frac{1}{1 + \ci} \begin{bmatrix} \ci \amp -1 - \ci \\ 1 - 5 \ci \amp 5 + 5 \ci \end{bmatrix}\\ \\ \amp = \frac{1 - \ci}{1 - \ci} \cdot \frac{1}{1 + \ci} \begin{bmatrix} \ci \amp -1 - \ci \\ 1 - 5 \ci \amp 5 + 5 \ci \end{bmatrix}\\ \\ \amp = \frac{1}{2} \left[\begin{array}{cr} 1 + \ci \amp - 2 \\ -4 - 6 \ci \amp 10 \end{array}\right] \end{align*}

You can verify that this is the correct inverse by multiplying it against \(A\) to ensure it produces the identity matrix.

Example 11.3.5. Using the row reduction method to compute an inverse.

We can row reduce to compute inverses as well, using the method of Subsection 6.4.3. Consider

\begin{equation*} A = \begin{bmatrix} 1 + \ci \amp 0 \amp 2 + \ci \\ 0 \amp 2 \amp -2 - 4 \ci \\ \ci \amp 0 \amp 1 + \ci \end{bmatrix}. \end{equation*}

Augment with the identity and reduce:

\begin{align*} \amp \left[\begin{array}{ccc|ccc} 1 + \ci \amp 0 \amp 2 + \ci \amp 1 \amp 0 \amp 0 \\ 0 \amp 2 \amp -2 - 4 \ci \amp 0 \amp 1 \amp 0 \\ \ci \amp 0 \amp 1 + \ci \amp 0 \amp 0 \amp 1 \end{array}\right] \begin{matrix} \phantom{x} \\ R_1 \leftrightarrow R_3 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} \ci \amp 0 \amp 1 + \ci \amp 0 \amp 0 \amp 1 \\ 0 \amp 2 \amp -2 - 4 \ci \amp 0 \amp 1 \amp 0 \\ 1 + \ci \amp 0 \amp 2 + \ci \amp 1 \amp 0 \amp 0 \end{array}\right] \begin{matrix} -\ci R_1 \\ \frac{1}{2} R_2 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp 1 - \ci \amp 0 \amp 0 \amp - \ci \\ 0 \amp 1 \amp -1 - 2 \ci \amp 0 \amp \frac{1}{2} \amp 0 \\ 1 + \ci \amp 0 \amp 2 + \ci \amp 1 \amp 0 \amp 0 \end{array}\right] \begin{matrix} \phantom{x} \\ \phantom{x} \\ R_3 - R_1 \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp 1 - \ci \amp 0 \amp 0 \amp - \ci \\ 0 \amp 1 \amp -1 - 2 \ci \amp 0 \amp \frac{1}{2} \amp 0 \\ \ci \amp 0 \amp 1 + 2 \ci \amp 1 \amp 0 \amp \ci \end{array}\right] \begin{matrix} \phantom{x} \\ \phantom{x} \\ - \ci R_3 \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp 1 - \ci \amp 0 \amp 0 \amp - \ci \\ 0 \amp 1 \amp -1 - 2 \ci \amp 0 \amp \frac{1}{2} \amp 0 \\ 1 \amp 0 \amp 2 - \ci \amp -\ci \amp 0 \amp 1 \end{array}\right] \begin{matrix} \phantom{x} \\ \phantom{x} \\ R_3 - R_1 \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp 1 - \ci \amp 0 \amp 0 \amp - \ci \\ 0 \amp 1 \amp -1 - 2 \ci \amp 0 \amp \frac{1}{2} \amp 0 \\ 0 \amp 0 \amp 1 \amp -\ci \amp 0 \amp 1 + \ci \end{array}\right] \begin{matrix} R_1 - R_3 \\ R_2 + R_3 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp - \ci \amp \ci \amp 0 \amp -1 - 2\ci \\ 0 \amp 1 \amp - 2 \ci \amp -\ci \amp \frac{1}{2} \amp 1 + \ci \\ 0 \amp 0 \amp 1 \amp -\ci \amp 0 \amp 1 + \ci \end{array}\right] \begin{matrix} \ci R_1 \\ \ci R_2 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} \ci \amp 0 \amp 1 \amp -1 \amp 0 \amp 2 - \ci \\ 0 \amp \ci \amp 2 \amp 1 \amp \frac{1}{2} \, \ci \amp -1 + \ci \\ 0 \amp 0 \amp 1 \amp -\ci \amp 0 \amp 1 + \ci \end{array}\right] \begin{matrix} R_1 - R_3 \\ R_2 - 2 R_3 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} \ci \amp 0 \amp 0 \amp -1 + \ci \amp 0 \amp 1 - 2 \ci \\ 0 \amp \ci \amp 0 \amp 1 + 2 \ci \amp \frac{1}{2} \, \ci \amp -3 - \ci \\ 0 \amp 0 \amp 1 \amp -\ci \amp 0 \amp 1 + \ci \end{array}\right] \begin{matrix} -\ci R_1 \\ -\ci R_2 \\ \phantom{x} \end{matrix}\\ \\ \longrightarrow \amp \left[\begin{array}{ccc|ccc} 1 \amp 0 \amp 0 \amp 1 + \ci \amp 0 \amp -2 - \ci \\ 0 \amp 1 \amp 0 \amp 2 - \ci \amp \frac{1}{2} \amp -1 + 3 \ci \\ 0 \amp 0 \amp 1 \amp -\ci \amp 0 \amp 1 + \ci \end{array}\right]. \end{align*}

From this calculation, we obtain

\begin{equation*} \inv{A} = \begin{bmatrix} 1 + \ci \amp 0 \amp -2 - \ci \\ 2 - \ci \amp \frac{1}{2} \amp -1 + 3 \ci \\ -\ci \amp 0 \amp 1 + \ci \end{bmatrix}. \end{equation*}

Subsubsection 11.3.2.2 Determinant

Example 11.3.6. Complex determinant by cofactor expansion.

Let's compute the determinant of the complex matrix

\begin{equation*} B = \begin{bmatrix} 1 + \ci \amp 2 \amp - 3\ci \\ 0 \amp 2 \amp -2 - 4 \ci \\ \ci \amp 0 \amp 1 + \ci \end{bmatrix}. \end{equation*}

Matrix \(B\) is one row operation away from the matrix \(A\) from Example 11.3.5. Since we found \(A\) to be invertible, \(B\) should be invertible as well, and so we expect to find \(\det B\) to be nonzero.

Expanding along the middle row, we have

\begin{align*} \det B \amp = \begin{vmatrix} 1 + \ci \amp 2 \amp - 3\ci \\ 0 \amp 2 \amp -2 - 4 \ci \\ \ci \amp 0 \amp 1 + \ci \end{vmatrix}\\ \\ \amp = 2 \begin{vmatrix} 1 + \ci \amp - 3\ci \\ \ci \amp 1 + \ci \end{vmatrix} - (-2 - 4\ci) \begin{vmatrix} 1 + \ci \amp 2 \\ \ci \amp 0 \end{vmatrix}\\ \\ \amp = 2 \bbrac{ (1 + \ci)^2 - (- 3\ci) \cdot \ci } + (2 + 4\ci) (0 - 2 \ci)\\ \\ \amp = 2. \end{align*}

Note that the cofactor expansion is performed exactly as for real matrices, including cofactor signs.

Subsubsection 11.3.2.3 Conjugate and the complex adjoint

Example 11.3.7. The conjugate of a matrix.

Let's compute the conjugate of the matrix from Example 11.3.5:

\begin{align*} A \amp = \begin{bmatrix} 1 + \ci \amp 0 \amp 2 + \ci \\ 0 \amp 2 \amp -2 - 4 \ci \\ \ci \amp 0 \amp 1 + \ci \end{bmatrix}, \amp \cconj{A} \amp = \begin{bmatrix} 1 - \ci \amp 0 \amp 2 - \ci \\ 0 \amp 2 \amp -2 + 4 \ci \\ -\ci \amp 0 \amp 1 - \ci \end{bmatrix}. \end{align*}

Notice that the purely real entries do not change, while the purely imaginary entries become negative.

While we're at it, let's compute the conjugate of the inverse of \(A\text{:}\)

\begin{align*} \inv{A} \amp = \begin{bmatrix} 1 + \ci \amp 0 \amp -2 - \ci \\ 2 - \ci \amp \frac{1}{2} \amp -1 + 3 \ci \\ -\ci \amp 0 \amp 1 + \ci \end{bmatrix}, \amp \lcconj{\inv{A}} \amp = \begin{bmatrix} 1 - \ci \amp 0 \amp -2 + \ci \\ 2 + \ci \amp \frac{1}{2} \amp -1 - 3 \ci \\ \ci \amp 0 \amp 1 - \ci \end{bmatrix}. \end{align*}

What do you think will happen if we multiply \(\cconj{A}\) and \(\lcconj{\inv{A}}\) together?

\begin{align*} \cconj{A} \lcconj{\inv{A}} \amp = \begin{bmatrix} 1 - \ci \amp 0 \amp 2 - \ci \\ 0 \amp 2 \amp -2 + 4 \ci \\ -\ci \amp 0 \amp 1 - \ci \end{bmatrix} \begin{bmatrix} 1 - \ci \amp 0 \amp -2 + \ci \\ 2 + \ci \amp \frac{1}{2} \amp -1 - 3 \ci \\ \ci \amp 0 \amp 1 - \ci \end{bmatrix}\\ \\ \amp = \begin{bmatrix} (1 - \ci)^2 + (2 - \ci) \cdot \ci \amp 0 \amp (1 - \ci) (-2 + \ci) + (2 - \ci) (1 - \ci) \\ 2 (2 + \ci) + (-2 + 4 \ci) \cdot \ci \amp 2 \cdot \frac{1}{2} \amp 2 (-1 - 3 \ci) + (-2 + 4 \ci) (1 - \ci) \\ -\ci (1 - \ci) + (1 - \ci) \cdot \ci \amp 0 \amp -\ci (-2 + \ci) + (1 - \ci)^2 \end{bmatrix}\\ \\ \amp = \begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}. \end{align*}

Surprised? With the above calculation, we have verified (for this example) that

\begin{gather} \inv{(\cconj{A})} = \lcconj{\inv{A}}\text{.}\label{equation-complex-matrices-examples-inv-conj}\tag{\(\star\)} \end{gather}

In Proposition 11.4.2 we will record that this formula holds in general.

Example 11.3.8. The complex adjoint of a matrix.

Continuing Example 11.3.7, we have

\begin{align*} A \amp = \begin{bmatrix} 1 + \ci \amp 0 \amp 2 + \ci \\ 0 \amp 2 \amp -2 - 4 \ci \\ \ci \amp 0 \amp 1 + \ci \end{bmatrix}, \amp \adjoint{A} \amp = \begin{bmatrix} 1 - \ci \amp 0 \amp -\ci \\ 0 \amp 2 \amp 0 \\ 2 - \ci \amp -2 + 4 \ci \amp 1 - \ci \end{bmatrix}. \end{align*}

The adjoint \(\adjoint{A}\) is computed by taking the transpose of the conjugate \(\cconj{A}\text{.}\) The pattern between \(A\) and \(\adjoint{A}\) is as follows: each entry along the main diagonal is conjugated, and each off-diagonal entry is both conjugated and reflected to its symmetric position on the other side of the main diagonal.

Similarly to Example 11.3.7, you can compute the product \(\adjoint{A} \adjoint{\bigl(\inv{A}\bigr)}\) if you like, but just taking the transpose of both sides of formula (\(\star\)) and using Proposition 5.5.8 on the left will lead to the formula

\begin{equation*} \inv{\bigl(\adjoint{A}\bigr)} = \adjoint{\bigl(\inv{A}\bigr)} \text{.} \end{equation*}
Example 11.3.9. Self-adjoint matrices.

Consider matrices

\begin{align*} A \amp = \begin{bmatrix} 1 \amp \ci \amp 1 + \ci \\ -\ci \amp 2 \amp 2 - \ci \\ 1 - \ci \amp 2 + \ci \amp 3 \end{bmatrix}\text{,} \amp B \amp = \begin{bmatrix} 1 \amp \ci \amp 1 + \ci \\ -\ci \amp 2\ci \amp 2 - \ci \\ 1 + \ci \amp 2 + \ci \amp 3 \end{bmatrix}\text{.} \end{align*}

Let's compute their adjoints:

\begin{align*} \cconj{A} \amp = \begin{bmatrix} 1 \amp -\ci \amp 1 - \ci \\ \ci \amp 2 \amp 2 + \ci \\ 1 + \ci \amp 2 - \ci \amp 3 \end{bmatrix}\text{,} \amp \cconj{B} \amp = \begin{bmatrix} 1 \amp -\ci \amp 1 - \ci \\ \ci \amp -2\ci \amp 2 + \ci \\ 1 - \ci \amp 2 - \ci \amp 3 \end{bmatrix}\text{,}\\ \adjoint{A} \amp = \begin{bmatrix} 1 \amp \ci \amp 1 + \ci \\ -\ci \amp 2 \amp 2 - \ci \\ 1 - \ci \amp 2 + \ci \amp 3 \end{bmatrix}\text{,} \amp \adjoint{B} \amp = \begin{bmatrix} 1 \amp \ci \amp 1 - \ci \\ -\ci \amp -2\ci \amp 2 - \ci \\ 1 - \ci \amp 2 + \ci \amp 3 \end{bmatrix}\text{.} \end{align*}

Comparing with the original matrices, we see that \(\adjoint{A} = A\) but \(\adjoint{B} \neq B\text{.}\) That is, \(A\) is self-adjoint, but \(B\) is not.

What is the pattern that worked in \(A\) but not in \(B\text{?}\) First, every entry along the main diagonal in \(A\) is real, and so is equal to its own conjugate. Which is important, because entries along the diagonal do not change when taking the transpose. However, \(B\) has an entry along the main diagonal that is not real. Second, every entry not along the main diagonal in \(A\) is equal to the conjugate of the entry in the symmetric position on the other side of the main diagonal. However, in \(B\) the \((1,3)\) and \((3,1)\) entries are both equal to \(1 + \ci\text{,}\) and so are not equal to the conjugate of each other.