Processing math: 100%
Skip to main content

Section 39.4 Examples

Here we will provide two examples of constructing product-preserving matrices.

Example 39.4.1. An orthogonal matrix.

The vectors

v1=[1100],v2=[1102],v3=[1101],v4=[0010]

form an orthogonal basis of R4.

We can normalize these vectors into an orthonormal basis:

v1=[121200],v2=[1616026],v3=[1313013],v4=[0010].

Placing these four vectors as columns in a 4×4 matrix results in an orthogonal matrix:

A=[121613012161300001026130].
Example 39.4.2. A unitary matrix.

The vectors

v1=[11ii],v2=[13ii],v3=[i010],v4=[i012]

form an orthogonal basis of C4.

We can normalize these vectors into an orthonormal basis:

v1=[1212i2i2],v2=[12332i23i23],v3=[i20120],v4=[i601626].

Placing these four vectors as columns in a 4×4 matrix results in a unitary matrix:

A=[12123i2i6123200i2i231216i2i23026].