Example 30.2.1. A transition matrix of generalized eigenvectors for a matrix with more than one eigenvalue.
Let's see what happens if we try to apply Procedure 29.4.1 to the \(7 \times 7\) matrix
\begin{equation*}
A = \left[\begin{array}{rrrrrrr}
3 \amp 4 \amp 1 \amp -1 \amp 0 \amp -4 \amp 0 \\
0 \amp 3 \amp -4 \amp 0 \amp 4 \amp 0 \amp 0 \\
0 \amp 0 \amp 5 \amp -1 \amp -1 \amp 0 \amp 0 \\
0 \amp 0 \amp -2 \amp 2 \amp 3 \amp 0 \amp 0 \\
0 \amp 0 \amp 6 \amp -1 \amp -2 \amp 0 \amp 0 \\
0 \amp 4 \amp -5 \amp 0 \amp 5 \amp -1 \amp 0 \\
4 \amp 3 \amp 1 \amp -1 \amp 0 \amp -3 \amp -1
\end{array}\right]\text{.}
\end{equation*}
If you compute the characteristic polynomial of \(A\) (maybe use a computer algebra system?), you will find
\begin{equation*}
c_A(\lambda) = (\lambda - 3)^4(\lambda + 1)^3 \text{.}
\end{equation*}
Thus, the eigenvalues of \(A\) are \(\lambda_1 = 3\text{,}\) with multiplicity \(m_1 = 4\text{,}\) and \(\lambda_2 = -1\text{,}\) with multiplicity \(m_2 = 3\text{.}\) Since \(A\) has two distinct eigenvalues, we will not be able to put \(A\) into scalar-triangular form. But let's compute the (generalized) eigenspaces of \(A\) anyway.
We begin with \(\lambda_1 = 3\text{:}\)
\begin{gather*}
3 I - A
= \left[\begin{array}{rrrrrrr}
0 \amp -4 \amp -1 \amp 1 \amp 0\amp 4 \amp 0 \\
0 \amp 0 \amp 4 \amp 0 \amp -4\amp 0 \amp 0 \\
0 \amp 0 \amp -2 \amp 1 \amp 1\amp 0 \amp 0 \\
0 \amp 0 \amp 2 \amp 1 \amp -3\amp 0 \amp 0 \\
0 \amp 0 \amp -6 \amp 1 \amp 5\amp 0 \amp 0 \\
0 \amp -4 \amp 5 \amp 0 \amp -5\amp 4 \amp 0 \\
-4 \amp -3 \amp -1 \amp 1 \amp 0\amp 3 \amp 4
\end{array}\right]\\
\\
\rowredarrow \quad
\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp -1 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp -1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp -1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{array}\right]\\
\\
\implies
E_3(A) = \Span\left\{
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}
\right\}\text{.}
\end{gather*}
Since the geometric multiplicity of the eigenvalue \(\lambda_1 = 3\) is not equal to the algebraic multiplicity, we need to continue with powers of \((3 I - A)\text{.}\)
\begin{gather*}
(3I-A)^2
= \left[\begin{array}{rrrrrrr}
0 \amp -16 \amp 8 \amp 0 \amp - 8 \amp 16 \amp 0 \\
0 \amp 0 \amp 16 \amp 0 \amp -16 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 16 \amp 0 \amp -16 \amp 0 \amp 0 \\
0 \amp 0 \amp -16 \amp 0 \amp 16 \amp 0 \amp 0 \\
0 \amp -16 \amp 24 \amp 0 \amp -24 \amp 16 \amp 0 \\
-16 \amp - 8 \amp 7 \amp 0 \amp - 7 \amp 8 \amp 16
\end{array}\right]\\
\\
\rowredarrow \quad
\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp -1 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp -1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{array}\right]\\
\\
\implies \qquad
E_3^2(A) = \Span\left\{
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\right\}
\end{gather*}
The dimension of this generalized eigensubspace is equal to the multiplicity of \(\lambda_1 = 3\text{,}\) so we have \(G_3(A) = E^2_3(A)\) (Statement 5 of Theorem 29.6.1). Following Procedure 29.4.1, we extend our basis for \(E_3(A)\) to one for \(E^2_3(A)\) instead of just using the above basis.
\begin{equation*}
G_3(A) = \Span\left\{
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\right\}.
\end{equation*}
Now we continue with eigenvalue \(\lambda_2 = -1\text{:}\)
\begin{gather*}
(-1) I - A
= \left[\begin{array}{rrrrrrr}
-4 \amp -4 \amp -1 \amp 1 \amp 0 \amp 4 \amp 0 \\
0 \amp -4 \amp 4 \amp 0 \amp -4 \amp 0 \amp 0 \\
0 \amp 0 \amp -6 \amp 1 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 2 \amp -3 \amp -3 \amp 0 \amp 0 \\
0 \amp 0 \amp -6 \amp 1 \amp 1 \amp 0 \amp 0 \\
0 \amp -4 \amp 5 \amp 0 \amp -5 \amp 0 \amp 0 \\
-4 \amp -3 \amp -1 \amp 1 \amp 0 \amp 3 \amp 0
\end{array}\right]\\
\\
\rowredarrow \quad
\amp\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{array}\right]\\
\\
\implies
E_{-1}(A) = \Span\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}\text{.}
\end{gather*}
We are not up to the algebraic multiplicity \(m_2 = 3\text{,}\) so continue with powers of \((-I - A)\text{:}\)
\begin{gather*}
(-I - A)^2
= \left[\begin{array}{rrrrrrr}
16 \amp 16 \amp 16 \amp -8 \amp -8 \amp -16 \amp 0 \\
0 \amp 16 \amp -16 \amp 0 \amp 16 \amp 0 \amp 0 \\
0 \amp 0 \amp 32 \amp -8 \amp -8 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 8 \amp 8 \amp 0 \amp 0 \\
0 \amp 0 \amp 32 \amp -8 \amp -8 \amp 0 \amp 0 \\
0 \amp 16 \amp -16 \amp 0 \amp 16 \amp 0 \amp 0 \\
16 \amp 16 \amp 15 \amp -8 \amp -7 \amp -16 \amp 0
\end{array}\right]\\
\\
\rowredarrow \quad
\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{array}\right]\\
\\
\implies \quad
E^2_{-1}(A) = \Span\left\{
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
\right\}\text{.}
\end{gather*}
The dimension of \(E^2_{-1}(A)\) is still not equal to the algebraic multiplicity of \(\lambda_2 = -1\text{,}\) so continue:
\begin{gather*}
(-I-A)^3
= \left[\begin{array}{rrrrrrr}
-64 \amp -64 \amp - 96 \amp 48 \amp 48 \amp 64 \amp 0 \\
0 \amp -64 \amp 64 \amp 0 \amp -64 \amp 0 \amp 0 \\
0 \amp 0 \amp -160 \amp 48 \amp 48 \amp 0 \amp 0 \\
0 \amp 0 \amp - 32 \amp -16 \amp -16 \amp 0 \amp 0 \\
0 \amp 0 \amp -160 \amp 48 \amp 48 \amp 0 \amp 0 \\
0 \amp -64 \amp 64 \amp 0 \amp -64 \amp 0 \amp 0 \\
-64 \amp -64 \amp - 96 \amp 48 \amp 48 \amp 64 \amp 0
\end{array}\right]\\
\\
\rowredarrow \quad
\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp -1 \amp -1 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{array}\right]\\
\\
\implies \qquad
E^3_{-1}(A) = \Span\left\{
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},
\left[\begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{array}\right]
\right\}\text{.}
\end{gather*}
We are now up to the algebraic multiplicity for \(\lambda_2 = -1\text{,}\) so \(G_{-1}(A) = E^3_{-1}(A)\text{.}\) Again, remember that we need to build our basis for \(G_{-1}(A)\) one eigensubspace at a time. But notice that this time the first two vectors in our basis for \(E^3_{-1}(A)\) above are already the same as our basis for \(E^2_{-1}(A)\text{,}\) and the first vector in that basis is already the same as our basis vector for \(E_{-1}(A)\text{.}\) So we already have a basis for the generalized eigenspace \(G_{-1}(A)\) of the form required by the scalar-triangularization procedure, without any further adjustment:
\begin{equation*}
G_{-1}(A) = \Span\left\{
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},
\left[\begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{array}\right]
\right\}\text{.}
\end{equation*}
Finally, let's take \(P\) to be the matrix whose columns are our basis vectors for \(G_3(A)\) and \(G_{-1}(A)\text{:}\)
\begin{equation*}
P =
\left[\begin{array}{rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 1 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 1 \amp 0 \amp 0 \amp -1 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \\
1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0
\end{array}\right]\text{.}
\end{equation*}
If you compute the rank of \(P\text{,}\) you will find that it is \(7\text{.}\) Since \(P\) is a \(7 \times 7\) matrix, this tells us that the columns of \(P\) form a basis for \(\R^7\) (Theorem 21.5.5). And since \(P\) was formed by combining the bases from two different subspaces of \(\R^7\text{,}\) this calculation tells us that the generalized eigenspaces actually form a complete independent set of subspaces.
But are they a complete set of independent, \(A\)-invariant subspaces? We're not yet sure, but let's compute \(\inv{P}AP\) anyway and see what happens. Remember that we can do this by row reducing \(\left[\begin{array}{c|c} P \amp AP \end{array}\right] \to \left[\begin{array}{c|c} I \amp \inv{P}AP \end{array}\right] \text{:}\)
\begin{gather*}
\left[\begin{array}{rrrrrrr|rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 1 \amp 3 \amp 4 \amp 1 \amp -1 \amp 0 \amp -4 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \amp 0 \amp 3 \amp -4 \amp 0 \amp 4 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 5 \amp -1 \amp -1 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 1 \amp 0 \amp 0 \amp -1 \amp 0 \amp 0 \amp -2 \amp 2 \amp 3 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 6 \amp -1 \amp -2 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 4 \amp -5 \amp 0 \amp 5 \amp -1 \amp 0 \\
1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 4 \amp 3 \amp 1 \amp -1 \amp 0 \amp -3 \amp -1
\end{array}\right]\\
\rowredarrow \qquad
\left[\begin{array}{rrrrrrr|rrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 3 \amp 0 \amp 0 \amp -1 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 3 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 3 \amp -1 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 3 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \amp 1 \amp 2 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \amp 1 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1
\end{array}\right]\text{.}
\end{gather*}
It worked! Form matrix \(\inv{P} A P\) is upper triangular. But it also has a block-diagonal form — to emphasize this, let's remove some of the zeros in the bottom left and top right:
\begin{equation*}
\inv{P} A P
= \left[\begin{array}{rrrrrrr}
3 \amp 0 \amp 0 \amp -1 \\
0 \amp 3 \amp 0 \amp 0 \\
0 \amp 0 \amp 3 \amp -1 \\
0 \amp 0 \amp 0 \amp 3 \\
\amp \amp \amp \amp -1 \amp 1 \amp 2 \\
\amp \amp \amp \amp 0 \amp -1 \amp 1 \\
\amp \amp \amp \amp 0 \amp 0 \amp -1
\end{array}\right]\text{.}
\end{equation*}
We have two blocks, one for each generalized eigenspace of \(A\text{.}\) Each block is scalar-triangular, with the corresponding eigenvalue down the diagonal of the block, and of size equal to the algebraic multiplicity of the eigenvalue. This pattern is no coincidence.