Skip to main content

Section 34.4 Examples

Subsection 34.4.1 Determining the form indirectly

Here we will carry out the indirect analysis method described in Subsection 34.3.4 in a fairly simple case.

Example 34.4.1. Determining Jordan normal form.

Consider the matrix

\begin{equation*} A = \left[\begin{array}{rrrrrrr} 3 \amp 4 \amp 1 \amp -1 \amp 0 \amp -4 \amp 0 \\ 0 \amp 3 \amp -4 \amp 0 \amp 4 \amp 0 \amp 0 \\ 0 \amp 0 \amp 5 \amp -1 \amp -1 \amp 0 \amp 0 \\ 0 \amp 0 \amp -2 \amp 2 \amp 3 \amp 0 \amp 0 \\ 0 \amp 0 \amp 6 \amp -1 \amp -2 \amp 0 \amp 0 \\ 0 \amp 4 \amp -5 \amp 0 \amp 5 \amp -1 \amp 0 \\ 4 \amp 3 \amp 1 \amp -1 \amp 0 \amp -3 \amp -1 \end{array}\right] \end{equation*}

from Example 30.2.1. This matrix has two eigenvalues: \(\lambda_1 = 3\) of multiplicity \(m_1 = 4\text{,}\) and \(\lambda_2 = -1\) of multiplicity \(m_2 = 3\text{.}\) So we expect the Jordan normal form of \(A\) to have “macro” blocks

\begin{equation*} J = \begin{bmatrix} 3 I + N_1 \\ \amp (-1) I + N_2 \end{bmatrix} \text{,} \end{equation*}

where the first block \(3 I + N_1\) is a \(4 \times 4\) block-diagonal matrix of Jordan blocks for \(\lambda_1 = 3\text{,}\) and the second block \((-1) I + N_2\) is a \(3 \times 3\) block-diagonal matrix of Jordan blocks for \(\lambda_2 = -1\text{.}\)

Analyze \(A - \lambda_1 I\) first. We calculate the ranks of powers of \(A - \lambda_1 I\text{,}\) subtracting off the multiplicity of the other eigenvalue \(\lambda_2\text{:}\)

\begin{align*} \rank (A - 3 I) - m_2 \amp = 1, \\ \rank (A - 3 I)^2 - m_2 \amp = 0. \end{align*}

We can stop here, since only the zero matrix has rank zero. So we know the \(4 \times 4\) nilpotent part of the \(\lambda_1\) block has already become zero at the second power. (In general, we know it will at worst become zero at exponent equal to the algebraic multiplicity for that eigenvalue.) From the first rank, we know that there are \(m_1 - 1 = 3\) Jordan blocks for \(\lambda_1 = 3\text{,}\) and from the second rank, we know that the largest is of size \(2 \times 2\text{.}\) From the first rank again, we can conclude that there is only one \(2 \times 2\) block, so there must be two more \(1 \times 1\) blocks, from which we get the partial Jordan form

\begin{equation*} J = \begin{bmatrix} \boxed{ \begin{matrix} 3 \\ 1 \amp 3 \\ \amp \amp 3 \\ \amp \amp \amp 3 \end{matrix} } \\ \amp \boxed{\begin{matrix} \phantom{X} \\ \amp (-1)I + N_2 \\ \amp \amp \phantom{X} \end{matrix}} \end{bmatrix}\text{.} \end{equation*}

Now analyze \(A - \lambda_2 I\text{.}\) Again, we calculate the ranks of powers of \(A - \lambda_2 I\text{,}\) subtracting off the multiplicity of the other eigenvalue \(\lambda_1\text{:}\)

\begin{align*} \rank (A + I) - m_1 \amp = 2, \\ \rank (A + I)^2 - m_1 \amp = 1, \\ \rank (A + I)^3 - m_1 \amp = 0. \end{align*}

From the first rank, we know that there is only \(m_2 - 2 = 1\) Jordan block for \(\lambda_2 = -1\text{.}\) The third rank corroborates this, since it tells us that the largest block has size \(3 \times 3\) (which is equal to the overall size \(m_2 = 3\) of the blocks for \(\lambda_2 = -1\)). And the second rank corroborates this as well, since it tells us that there is only one block of that largest size \(3 \times 3\text{.}\) With this information, we now have the exact Jordan form for \(A\text{:}\)

\begin{equation*} J = \begin{bmatrix} \boxed{\begin{matrix} 3 \\ 1 \amp 3 \\ \amp \amp 3 \\ \amp \amp \amp 3 \end{matrix}} \\ \amp \boxed{\begin{array}{rrr} -1 \\ 1 \amp -1 \\ \amp 1 \amp -1 \end{array}} \end{bmatrix}\text{.} \end{equation*}

Subsection 34.4.2 Using the procedure

Now a simple example of using Procedure 34.3.1 to calculate a transition matrix to put a given matrix into Jordan normal form. Notice that the matrix we analyze is the same as in Example 34.4.1.

Example 34.4.2. Calculating a transition matrix for Jordan form.

In Example 30.2.1, we determined a matrix \(Q\) that puts the following \(7 \times 7\) matrix \(A\) in triangular-block form:

\begin{gather*} A = \left[\begin{array}{rrrrrrr} 3 \amp 4 \amp 1 \amp -1 \amp 0 \amp -4 \amp 0 \\ 0 \amp 3 \amp -4 \amp 0 \amp 4 \amp 0 \amp 0 \\ 0 \amp 0 \amp 5 \amp -1 \amp -1 \amp 0 \amp 0 \\ 0 \amp 0 \amp -2 \amp 2 \amp 3 \amp 0 \amp 0 \\ 0 \amp 0 \amp 6 \amp -1 \amp -2 \amp 0 \amp 0 \\ 0 \amp 4 \amp -5 \amp 0 \amp 5 \amp -1 \amp 0 \\ 4 \amp 3 \amp 1 \amp -1 \amp 0 \amp -3 \amp -1 \end{array}\right] \text{,} \quad Q = \left[\begin{array}{rrrrrrr} 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp 1 \\ 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \amp -1 \\ 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 1 \amp 0 \amp 0 \amp -1 \\ 0 \amp 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \\ 0 \amp 1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \\ 1 \amp 0 \amp 0 \amp 0 \amp 1 \amp 0 \amp 0 \end{array}\right]\\ \implies \inv{Q} A Q = \begin{bmatrix} \boxed{ \begin{array}{rrrr} 3 \amp 0 \amp 0 \amp -1 \\ \amp 3 \amp 0 \amp 0 \\ \amp \amp 3 \amp -1 \\ \amp \amp \amp 3 \end{array} } \\ \amp \boxed{ \begin{array}{rrr} -1 \amp 1 \amp 2 \\ \amp -1 \amp 1 \\ \amp \amp -1 \end{array} } \end{bmatrix} \text{.} \end{gather*}

(Note that we called the transition matrix \(P\) in that example).

Now, let's put the nilpotent part of each block of \(\inv{Q} A Q\) into nilpotent triangular form. Since the blocks are small, we will determine cyclic space bases by inspection, using our knowledge of the theory from Section 33.6, instead of using either of the procedures from Subsection 33.4.3. Break each of the two blocks of \(\inv{Q} A Q\) into its scalar and nilpotent parts:

\begin{gather*} A_1 = \left[\begin{array}{cccr} 3 \amp 0 \amp 0 \amp -1 \\ \amp 3 \amp 0 \amp 0 \\ \amp \amp 3 \amp -1 \\ \amp \amp \amp 3 \end{array}\right] \text{,} \;\; N_1 = \left[\begin{array}{cccr} 0 \amp 0 \amp 0 \amp -1 \\ \amp 0 \amp 0 \amp 0 \\ \amp \amp 0 \amp -1 \\ \amp \amp \amp 0 \end{array}\right] \quad \implies \quad A_1 = 3I_4 + N_1 \text{;}\\ A_2 = \left[\begin{array}{rrr} -1 \amp 1 \amp 2\\ \amp -1 \amp 1\\ \amp \amp -1 \end{array}\right] \text{,} \;\; N_2 = \begin{bmatrix} 0 \amp 1 \amp 2\\ \amp 0 \amp 1\\ \amp \amp 0 \end{bmatrix} \quad \implies \quad A_2 \amp = (-1)I_3 + N_2 \text{.} \end{gather*}

Start with \(N_1\text{.}\) Let \(N_1'\) represent the nilpotent triangular form for \(N_1\text{.}\) Since \(N_1^2 = \zerovec\text{,}\) the largest block in \(N_1'\) has size \(2 \times 2\text{.}\) We have \(\rank N_1 = 1\text{,}\) so there is only one \(2\times 2\) block, and from \(\nullity N_1 = 3\) (nullity is size minus rank), we see that \(N_1'\) will have three blocks. Therefore, we need one two-dimensional \(N_1\)-cyclic subspace of \(\R^4\text{,}\) and two one-dimensional subspaces. Since the fourth column of \(N_1\) is nonzero, we can use \(\uvec{e}_4\) to generate the two-dimensional space. We can use any vectors in the null space of \(N_1\) that are linearly independent with that fourth column to generate the one-dimensional spaces. For example, one can easily see by inspection that \(\uvec{e}_1,\uvec{e}_2\) both lie in the null space of \(N_1\text{.}\) Thus, set

\begin{align*} W_1 \amp = \Span \{ \uvec{e}_4, N_1 \uvec{e}_4 \}, \amp W_2 \amp = \Span \{ \uvec{e}_1 \}, \amp W_3 \amp = \Span \{ \uvec{e}_2 \}. \end{align*}

Using these cyclic bases, we get

\begin{align*} R_1 \amp = \left[\begin{array}{crcc} 0 \amp -1 \amp 1 \amp 0 \\ 0 \amp 0 \amp 0 \amp 1 \\ 0 \amp -1 \amp 0 \amp 0 \\ 1 \amp 0 \amp 0 \amp 0 \end{array}\right] \amp \amp \implies \amp N_1' = \inv{R_1} N_1 R_1 \amp = \begin{bmatrix} 0 \\ 1 \amp 0 \\ \amp \amp 0 \\ \amp \amp \amp 0 \end{bmatrix}\text{.} \end{align*}

For \(N_2\text{,}\) we have

\begin{align*} N_2 \amp = \begin{bmatrix} 0 \amp 1 \amp 2\\ \amp 0 \amp 1\\ \amp \amp 0 \end{bmatrix} \text{,} \amp N_2^2 \amp = \begin{bmatrix} 0 \amp 0 \amp 1\\ \amp 0 \amp 0\\ \amp \amp 0 \end{bmatrix} \text{,} \amp N_2^3 \amp = \zerovec \text{.} \end{align*}

Since \(N_2\) is \(3\times 3\) and the first power of \(N_2\) that is zero is the \(\ird[3]\) power, \(N_2\) should be similar to a matrix in elementary nilpotent form. The third column of \(N_2^2\) is nonzero, so we can set

\begin{equation*} U = \Span \{ \uvec{e}_3, N_2 \uvec{e}_3, N_2^2 \uvec{e}_3 \} \text{,} \end{equation*}

and use this cyclic basis to get

\begin{align*} R_2 \amp = \begin{bmatrix} 0 \amp 2 \amp 1 \\ 0 \amp 1 \amp 0 \\ 1 \amp 0 \amp 0 \end{bmatrix} \amp \implies \amp N_2' = \inv{R_2} N_2 R_2 \amp = \begin{bmatrix} 0 \\ 1 \amp 0 \\ \amp 1 \amp 0 \end{bmatrix}\text{.} \end{align*}

We can also apply \(R_1,R_2\) to \(A_1,A_2\text{:}\)

\begin{align*} \amp \inv{R_1} A_1 R_1 \amp \amp \inv{R_2} A_2 R_2\\ \amp = \inv{R_1} (3I + N_1) R_1 \amp \amp = \inv{R_2} \bigl((-1)I + N_2\bigr) R_2\\ \amp = 3 \inv{R_1} I R_1 + \inv{R_1} N_1 R_1 \amp \amp = (-1) \inv{R_2} I R_2 + \inv{R_2} N_2 R_2 = 3 I + N_2'\\ \amp = 3 I + N_1' \amp \amp = (-1) I + N_2'\\ \amp = \begin{bmatrix} 3 \\ 1 \amp 3 \\ \amp \amp 3 \\ \amp \amp \amp 3 \end{bmatrix} \text{,} \amp \amp = \left[\begin{array}{rrr} -1 \\ 1 \amp -1 \\ \amp 1 \amp -1 \end{array}\right] \text{.} \end{align*}

Recall that the matrix \(Q\) puts \(A\) into triangular-block form. We see above that the matrices \(R_1,R_2\) break each block of \(\inv{Q} A Q\) into Jordan blocks. We can combine these by forming the block-diagonal matrix

\begin{equation*} R = \begin{bmatrix} R_1 \\ \amp R_2 \end{bmatrix} \end{equation*}

and setting \(P = Q R\text{.}\) Then,

\begin{align*} \inv{P} A P \amp = \inv{R} \inv{Q} A Q R \\ \amp = \begin{bmatrix} \inv{R_1} \\ \amp \inv{R_2} \end{bmatrix} \begin{bmatrix} A_1 \\ \amp A_2 \end{bmatrix} \begin{bmatrix} R_1 \\ \amp R_2 \end{bmatrix}\\ \amp = \begin{bmatrix} \inv{R_1} A_1 R_1 \\ \amp \inv{R_2} A_2 R_2 \end{bmatrix} \\ \amp = \begin{bmatrix} 3I + N_1' \\ \amp (-1)I + N_2' \end{bmatrix} \\ \amp = \begin{bmatrix} \boxed{\begin{matrix} 3 \\ 1 \amp 3 \\ \amp \amp 3 \\ \amp \amp \amp 3 \end{matrix}} \\ \amp \boxed{\begin{matrix} -1 \\ 1 \amp -1 \\ \amp 1 \amp -1 \end{matrix}} \end{bmatrix}\text{,} \end{align*}

the Jordan normal form of \(A\) as desired.