Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 32.1 Discovery guide
Discovery 32.1 . Moving past triangular block form.
Suppose
\(A\) is a square matrix. Recall that
\(A\) is similar over
\(\C\) to a matrix
\(T\) in triangular block form.
(a)
Suppose
\(T\) is similar to some “simpler” matrix
\(J\text{.}\) What then is the relationship between
\(A\) and this new matrix
\(J\text{?}\)
Relative to the title of this discovery activity, what is the point of this particular task?
(b)
Recall that a triangular block matrix \(T\) is a block-diagonal matrix
\begin{equation*}
T = \begin{bmatrix} T_1 \\ \amp T_2 \\ \amp \amp \ddots \\ \amp \amp \amp T_\ell \end{bmatrix} \text{,}
\end{equation*}
where each block \(T_j\) is in a particular form.
Suppose \(Q\) is a transition matrix that is also in block-diagonal form
\begin{equation*}
Q = \begin{bmatrix} Q_1 \\ \amp Q_2 \\ \amp \amp \ddots \\ \amp \amp \amp Q_\ell \end{bmatrix} \text{,}
\end{equation*}
where each block \(Q_j\) has the same size as the corresponding block \(T_j\) in \(T\text{.}\)
Express
\(\inv{Q} T Q\) in block form.
Relative to the title of this discovery activity, what is the point of this particular task?
(c)
Recall that each block \(T_j\) in a triangular block matrix \(T\) is in scalar-triangular form, and so can be decomposed as a sum of a scalar matrix \(\lambda_j I\) and a nilpotent matrix \(N_j\text{:}\)
\begin{equation*}
T_j = \lambda_j I + N_j \text{.}
\end{equation*}
Simplify expression
\(\inv{Q}_j (\lambda_j I + N_j) Q_j\text{.}\)
Relative to the title of this discovery activity, what is the point of this particular task?
Discovery 32.2 .
Verify that a matrix that is similar to a
nilpotent matrix must be nilpotent itself.
We now turn to the task suggested by
Discovery 32.1 : determining the pattern of similarity to a nilpotent matrix. As usual, we start with a special case.
Discovery 32.3 .
A matrix that is all zeros except for a line of ones down the first sub-diagonal is called
elementary nilpotent form .
Suppose \(4 \times 4\) matrix \(A\) is similar to the elementary nilpotent matrix
\begin{equation*}
N =
\begin{bmatrix}
0 \amp 0 \amp 0 \amp 0 \\
1 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0
\end{bmatrix} \text{.}
\end{equation*}
(a)
Compute the powers
\(N^2, N^3, N^4, \dotsc\) of
\(N\text{.}\) What is the pattern? What is the
degree of nilpotency of
\(N\text{?}\)
(b)
Discovery 32.2 says that
\(A\) must also be nilpotent. What is the first power of
\(A\) that is equal to the zero matrix?
(c)
What is the rank of
\(A\text{?}\) What is the rank of
\(A^2\text{?}\) Continue with ranks of higher powers of
\(A\text{.}\)
(d)
Repeat all tasks of this activity for \(5 \times 5\) matrix \(A\) similar to the elementary nilpotent matrix
\begin{equation*}
N = \begin{bmatrix}
0 \amp 0 \amp 0 \amp 0 \amp 0 \\
1 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \amp 0
\end{bmatrix}\text{.}
\end{equation*}
See if you can obtain the requested properties of \(A\) without calculations, just from the patterns of your previous results for \(4 \times 4\) matrices \(A\) and \(N\text{.}\)
Discovery 32.4 .
Suppose \(A\) is similar to the elementary nilpotent matrix
\begin{equation*}
N =
\begin{bmatrix}
0 \amp 0 \amp 0 \amp 0 \\
1 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0
\end{bmatrix}
\end{equation*}
via similarity relation \(\inv{P} A P = N\text{.}\)
(a)
Use
Pattern 26.3.1 to determine the similarity pattern in the relation
\(\inv{P} A P = N\text{:}\)
\begin{align*}
A \uvec{p}_1 \amp = \fillinmath{XXXXX},
\amp
A \uvec{p}_2 \amp = \fillinmath{XXXXX},
\amp
A \uvec{p}_3 \amp = \fillinmath{XXXXX},
\amp
A \uvec{p}_4 \amp = \fillinmath{XXXXX}\text{.}
\end{align*}
(b)
Reinterpret the pattern you described in
Task a :
\begin{align*}
A \uvec{p}_1 \amp = \fillinmath{XXXXX},
\amp
A^2 \uvec{p}_1 \amp = \fillinmath{XXXXX},
\amp
A^3 \uvec{p}_1 \amp = \fillinmath{XXXXX},
\amp
A^4 \uvec{p}_1 \amp = \fillinmath{XXXXX}\text{.}
\end{align*}
(c) Summarize the pattern of Task b.
If \(A\) is a nilpotent matrix that we suspect is similar to an elementary nilpotent matrix, to determine a suitable transition matrix \(P\) we just need to determine a suitable first column \(\uvec{p}_1\text{,}\) and then set
\begin{equation*}
P = \begin{bmatrix}
| \amp | \amp | \amp | \\
\uvec{p}_1 \amp \boxed{\phantom{XX}} \amp \boxed{\phantom{XX}} \amp \boxed{\phantom{XX}} \\
| \amp | \amp | \amp |
\end{bmatrix}\text{.}
\end{equation*}
(d)
Before even considering the linear independence of the columns that you filled in for
Task c , what condition might be used to judge the “suitability” of the choice of first column
\(\uvec{p}_1\text{?}\)
Hint .
The last fill-in-the-blank for
Task b seems like it expresses a pretty specific condition about
\(\uvec{p}_1\) relative to
\(A\text{.}\) However, if
\(A\) is similar to
\(N\) then
Task b of
Discovery 32.3 showed us that we will have
\(A^4 = \zerovec\text{,}\) so that particular condition from
Task b will be true for
every vector in
\(\R^4\text{.}\)
Instead, consider the following. We know that it is possible for many different transition matrices to achieve the similarity relation between two specific, similar matrices. Suppose you already had a suitable first column to create one transition matrix
\(P_1\) so that
\(\inv{P}_1 A P_1 = N\text{.}\) Could you use any of the other columns from
\(P_1\) as the
first column in a new transition matrix
\(P_2\text{,}\) and then fill in the rest of the columns of
\(P_2\) according to your pattern in
Task c ? How would the pattern of
Task b turn out in that case?
Discovery 32.5 .
Let’s try out the similarity patterns we discovered in
Discovery 32.4 .
The following \(3 \times 3\) matrix \(A\) satisfies \(A^3 = 0\) but \(A^2 \neq 0\text{:}\)
\begin{equation*}
A = \begin{abmatrix}{rrr} 0 \amp 2 \amp 1\\ -1 \amp 2 \amp 1\\ 2 \amp -4 \amp -2 \end{abmatrix} \text{.}
\end{equation*}
(a)
Verify that
\(\uvec{p}_1 = \uvec{e}_1 = (1,0,0)\) is
not a suitable choice, with “suitable” as you described in
Task d of
Discovery 32.4 .
(b)
Verify that
\(\uvec{p}_1 = \uvec{e}_2 = (0,1,0)\) is a suitable choice.
(c)
Now suppose
\(A\) is some
\(n \times n\) nilpotent matrix with
\(A^n = 0\) but
\(A^{n-1} \neq 0\text{.}\) Use your experience from
Task a and
Task b to devise a strategy for choosing a suitable first column
\(\uvec{p}_1\) for transition matrix
\(P\) from amongst the standard basis vectors
\(\uvec{e}_1, \uvec{e}_2, \dotsc, \uvec{e}_n \text{.}\)
Further refine your strategy based on your knowledge of the pattern of
matrix-times-standard-basis-vector . (See
Discovery 21.1 , for example.)