Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 45.1 Discovery guide
Discovery 45.1 .
In each of the following, determine an input-output formula for the isomorphism
\(V \to W\) that sends the standard basis for the domain space to the standard basis for the codomain space. Then determine an input-output formula for the inverse isomorphism.
(a)
\(V = \matrixring_2(\R)\text{,}\) \(W = \R^4\text{.}\)
(b)
\(V = \uppermatring_2(\R)\text{,}\) \(W = \R^3\text{.}\)
(c)
\(V = \poly_3(\R)\text{,}\) \(W = \R^4\text{.}\)
(d)
\(V = \poly_2(\R)\text{,}\) \(W = \R^3\text{.}\)
(e)
\(V = \Span \{ e^x \sin x, e^x \cos x \}\) (as a subspace of
\(F(\R)\) ),
\(W = \R^2\text{.}\)
Discovery 45.2 .
In each of the following, you are given a transformation
\(\funcdef{T}{V}{W}\text{,}\) where
\(V,W\) are spaces from various tasks in
Discovery 45.1 .
For each, carry out the following.
Choose an appropriate isomorphism from
Discovery 45.1 and the
inverse of an appropriate isomorphism from
Discovery 45.1 to chain together with
\(T\) to create a transformation
\begin{equation*}
\R^n \xrightarrow{\invcoordmapplain{\basisfont{S}_V}} V \xrightarrow{T} W \xrightarrow{\coordmapplain{\basisfont{S}_W}} \R^m \text{,}
\end{equation*}
for appropriate values of
\(n\) and
\(m\text{,}\) where
\(\basisfont{S}_V\) is the standard basis of
\(V\) and
\(\basisfont{S}_W\) is the standard basis for
\(W\text{.}\)
Determine an input-output formula for the composite transformation \(\funcdef{T'}{\R^n}{\R^m}\) that you’ve created in the first step.
Every transformation \(\R^n \to \R^m\) is a matrix transformation. Determine the standard matrix \(\stdmatrixOf{T'}\) for your transformation from the second step. (Recall that you can do this from your input output formulas, or by determining the outputs for standard basis vectors.)
(a)
\(\funcdef{T_1}{\matrixring_2(\R)}{\poly_2(\R)}\) by
\(\displaystyle T_1\left(\begin{bmatrix} a \amp b \\ c \amp d \end{bmatrix}\right) = -d + (a + b + c) x + (a + b) x^2\text{.}\)
(b)
\(\funcdef{T_2}{\poly_2(\R)}{\uppermatring_2(\R)}\) by
\(\displaystyle T_2(a_0 + a_1 x + a_2 x^2) = \begin{bmatrix} a_2 - a_1 \amp a_0 + a_1 \\ 0 \amp a_0 - a_2 \end{bmatrix}\text{.}\)
(c)
For
\(V = \Span \{ e^x \sin x, e^x \cos x \}\text{,}\) let
\(T_3 = \ddx\) be differentiation
\(V \to V\text{.}\)
Discovery 45.3 .
The transformations
\(T_1\) and
\(T_2\) from
Task a and
Task a of
Discovery 45.2 can be composed to create a transformation
\(\funcdef{T_2 T_1}{\matrixring_2(\R)}{\uppermatring_2(\R)}\text{.}\)
(a)
Repeat the three steps described in the introduction to
Discovery 45.2 to create a matrix corresponding to
\(T_2 T_1\text{.}\)
(b)
How do you think your matrix for the composition
\(T_2 T_1\) relates to the matrices for
\(T_1\) and
\(T_2\) that you already calculated in
Discovery 45.2 ? Check whether you are correct.
Discovery 45.4 .
Figure out how to use the pattern you discovered in
Discovery 45.3 , applied using your matrix from
Task c of
Discovery 45.2 , to compute the
second derivative of
\(f(x) = 3 e^x \sin x - e^x \cos x\text{.}\)
Discovery 45.5 .
Once again, consider differentiation
\(\funcdef{\ddx}{V}{V}\) as a linear operator on
\(V = \Span \{ e^x \sin x, e^x \cos x \}\text{.}\)
(a)
What is
\(\ker \ddx\) on this domain?
What does this say about differentiation on this domain?
(b)
Consider again your matrix for differentiation on
\(V\) from
Task c of
Discovery 45.2 . Do you think you could have come to the same conclusions about this operator as in
Task a from some property of the corresponding matrix?
(c)
Figure out how to use your matrix for differentiation on
\(V\) to compute an
anti derivative for
\(f(x) = 3 e^x \sin x - e^x \cos x\text{.}\)
Discovery 45.6 .
(a)
Remind yourself how your input-output formulas worked for
\(\poly_2(\R) \to \R^3\) and its inverse in
Task d of
Discovery 45.1 .
(b)
In the same way, determine a new input-output formula for a transformation \(\poly_2(\R) \to \R^3\) that sends the basis
\begin{equation*}
\basisfont{B} = \{ x^2 - 1, x + 1, x \}
\end{equation*}
to the standard basis for \(\R^3\text{,}\) along with an input-output formula for its inverse.
(c)
Similarly to
Discovery 45.2 , create a matrix for the chain of transformations
\begin{equation*}
\R^3 \xrightarrow{\invcoordmap{B}} \poly_2(\R) \xrightarrow{I} \poly_2(\R) \xrightarrow{\coordmap{S}} \R^3 \text{,}
\end{equation*}
where
Look at the columns of your matrix, compared to the basis vectors in \(\basisfont{B}\text{.}\) What matrix corresponding to a previous concept do you think you just calculated?
(d)
Suppose you repeated
Task c for the reverse composition:
\begin{equation*}
\R^3 \xrightarrow{\invcoordmap{S}} \poly_2(\R) \xrightarrow{I} \poly_2(\R) \xrightarrow{\coordmap{B}} \R^3 \text{.}
\end{equation*}
What matrix would you have calculated in that case?