Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\require{cancel}
\newcommand{\bigcdot}{\mathbin{\large\boldsymbol{\cdot}}}
\newcommand{\basisfont}[1]{\mathcal{#1}}
\newcommand{\iddots}{{\mkern3mu\raise1mu{.}\mkern3mu\raise6mu{.}\mkern3mu \raise12mu{.}}}
\DeclareMathOperator{\RREF}{RREF}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\matrixring}{M}
\DeclareMathOperator{\poly}{P}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\nullsp}{null}
\DeclareMathOperator{\uppermatring}{U}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\negop}{neg}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\ci}{\mathrm{i}}
\newcommand{\cconj}[1]{\bar{#1}}
\newcommand{\lcconj}[1]{\overline{#1}}
\newcommand{\cmodulus}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\irst}[1][1]{{#1}^{\mathrm{st}}}
\newcommand{\ond}[1][2]{{#1}^{\mathrm{nd}}}
\newcommand{\ird}[1][3]{{#1}^{\mathrm{rd}}}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\leftrightlinesubstitute}{\scriptstyle \overline{\phantom{xxx}}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\degree}[1]{{#1}^\circ}
\newcommand{\blank}{-}
\newenvironment{sysofeqns}[1]
{\left\{\begin{array}{#1}}
{\end{array}\right.}
\newcommand{\iso}{\simeq}
\newcommand{\absegment}[1]{\overline{#1}}
\newcommand{\abray}[1]{\overrightarrow{#1}}
\newcommand{\abctriangle}[1]{\triangle #1}
\newcommand{\abcdquad}[1]{\square\, #1}
\newenvironment{abmatrix}[1]
{\left[\begin{array}{#1}}
{\end{array}\right]}
\newenvironment{avmatrix}[1]
{\left\lvert\begin{array}{#1}}
{\end{array}\right\rvert}
\newcommand{\mtrxvbar}{\mathord{|}}
\newcommand{\utrans}[1]{{#1}^{\mathrm{T}}}
\newcommand{\rowredarrow}{\xrightarrow[\text{reduce}]{\text{row}}}
\newcommand{\bidentmattwo}{\begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatthree}{\begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\bidentmatfour}{\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0
\\ 0 \amp 0 \amp 0 \amp 1 \end{bmatrix}}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\bvec}[2]{#1\,\uvec{#2}}
\newcommand{\ivec}[1]{\bvec{#1}{i}}
\newcommand{\jvec}[1]{\bvec{#1}{j}}
\newcommand{\kvec}[1]{\bvec{#1}{k}}
\newcommand{\injkvec}[3]{\ivec{#1} - \jvec{#2} + \kvec{#3}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\unorm}[1]{\norm{\uvec{#1}}}
\newcommand{\dotprod}[2]{#1 \bigcdot #2}
\newcommand{\udotprod}[2]{\dotprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\crossprod}[2]{#1 \times #2}
\newcommand{\ucrossprod}[2]{\crossprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\uproj}[2]{\proj_{\uvec{#2}} \uvec{#1}}
\newcommand{\adjoint}[1]{{#1}^\ast}
\newcommand{\matrixOfplain}[2]{{\left[#1\right]}_{#2}}
\newcommand{\rmatrixOfplain}[2]{{\left(#1\right)}_{#2}}
\newcommand{\rmatrixOf}[2]{\rmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\matrixOf}[2]{\matrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invmatrixOfplain}[2]{\inv{\left[#1\right]}_{#2}}
\newcommand{\invrmatrixOfplain}[2]{\inv{\left(#1\right)}_{#2}}
\newcommand{\invmatrixOf}[2]{\invmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\invrmatrixOf}[2]{\invrmatrixOfplain{#1}{\basisfont{#2}}}
\newcommand{\stdmatrixOf}[1]{\left[#1\right]}
\newcommand{\ucobmtrx}[2]{P_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uinvcobmtrx}[2]{\inv{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\uadjcobmtrx}[2]{\adjoint{P}_{\basisfont{#1} \to \basisfont{#2}}}
\newcommand{\coordmapplain}[1]{C_{#1}}
\newcommand{\coordmap}[1]{\coordmapplain{\basisfont{#1}}}
\newcommand{\invcoordmapplain}[1]{\inv{C}_{#1}}
\newcommand{\invcoordmap}[1]{\invcoordmapplain{\basisfont{#1}}}
\newcommand{\similar}{\sim}
\newcommand{\inprod}[2]{\left\langle\, #1,\, #2 \,\right\rangle}
\newcommand{\uvecinprod}[2]{\inprod{\uvec{#1}}{\uvec{#2}}}
\newcommand{\orthogcmp}[1]{{#1}^{\perp}}
\newcommand{\vecdual}[1]{{#1}^\ast}
\newcommand{\vecddual}[1]{{#1}^{\ast\ast}}
\newcommand{\change}[1]{\Delta #1}
\newcommand{\dd}[2]{\frac{d{#1}}{d#2}}
\newcommand{\ddx}[1][x]{\dd{}{#1}}
\newcommand{\ddt}[1][t]{\dd{}{#1}}
\newcommand{\dydx}{\dd{y}{x}}
\newcommand{\dxdt}{\dd{x}{t}}
\newcommand{\dydt}{\dd{y}{t}}
\newcommand{\intspace}{\;}
\newcommand{\integral}[4]{\int^{#2}_{#1} #3 \intspace d{#4}}
\newcommand{\funcdef}[3]{#1\colon #2\to #3}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Discovery guide 43.1 Discovery guide
Attached to every linear transformation \(\funcdef{T}{V}{W}\) is a pair of important subspaces, one in the domain space and one in the codomain space.
kernel of \(T\)
the collection of all vectors
\(\uvec{v}\) in the domain space
\(V\) for which
\(T(\uvec{v}) = \zerovec_W\)
\(\ker T\)
notation for the kernel of
\(T\)
image of \(T\)
the collection of all image vectors
\(T(\uvec{v})\) in the codomain space
\(W\)
\(\im T\)
notation for the image of
\(T\)
Note that a vector \(\uvec{w}\) in \(W\) is in \(\im T\) precisely when there exists at least one \(\uvec{v}\) in \(V\) with \(T(\uvec{v}) = \uvec{w}\text{.}\)
Discovery 43.1 . Kernel of a matrix transformation.
(a)
(b) Connect to previous concepts.
Discovery 43.2 . Kernel examples.
In each of the following, describe the kernel vectors in words.
Try to use a more meaningful description than just “the vectors that evaluate to zero in the transformation”.
(a)
\(\funcdef{T}{\matrixring_n(\R)}{\matrixring_n(\R)}\) by
\(T(A) = A - \utrans{A}\text{.}\)
(b) Polynomial evaluation.
\(\funcdef{E_a}{\poly(\R)}{\R^1}\) by
\(E_a(p) = p(a) \text{.}\)
(c) Differentiation.
Let
\(F(a,b)\) represent the space of functions defined on the interval
\(a \lt x \lt b\text{,}\) and let
\(D(a,b)\) represent the subspace of
\(F(a,b)\) consisting of
differentiable functions.
Consider
\(\funcdef{\ddx}{D(a,b)}{F(a,b)}\) by
\(\ddx(f) = f'\text{.}\)
(d) Integration.
Let
\(C[a,b]\) represent the space of
continuous functions defined on the interval
\(a \le x \le b\text{.}\)
Consider
\(\funcdef{I_{a,b}}{C[a,b]}{\R^1}\) by
\(I_{a,b}(f) = \integral{a}{b}{f(x)}{x}\text{.}\)
Discovery 43.3 . Determining kernel basis.
For each of the provided transformations of \(\matrixring_{2}(\R)\text{,}\) determine a basis for \(\ker T\) by carrying out the following steps.
Starting with an arbitrary matrix
\begin{equation*}
X = \begin{bmatrix} a \amp b \\ c \amp d \end{bmatrix}
\end{equation*}
in
\(\matrixring_{2}(\R)\text{,}\) determine conditions on parameters
\(a,b,c,d\) so that
\(T(X) = \zerovec \text{.}\)
Use those conditions to reduce the number of parameters required to describe an arbitrary matrix in \(\ker T\text{.}\)
Determine the basis vector associated to each in the reduced collection of parameters.
Aside: Compare.
(a)
\(\funcdef{T = \trace}{\matrixring_{2}(\R)}{\R^1}\text{.}\)
(b)
\(\funcdef{T}{\matrixring_{2}(\R)}{\matrixring_{2}(\R)}\) by
\(T(A) = A - \utrans{A}\text{.}\)
(c)
\(\funcdef{T = L_B}{\matrixring_{2}(\R)}{\matrixring_{2}(\R)}\) by \(L_B(A) = B A\text{,}\) where
\begin{equation*}
B = \begin{bmatrix} 1 \amp 1 \\ 0 \amp 0 \end{bmatrix} \text{.}
\end{equation*}
Discovery 43.4 . Image of a matrix transformation.
(a) Apply the definition.
(b) Connect to previous concepts.
(c)
(d)
Discovery 43.5 . Describing images.
Once again, for transformation
\(\funcdef{T}{V}{W}\text{,}\) a vector
\(\uvec{w}\) in
\(W\) is in
\(\im T\) precisely when there exists a vector
\(\uvec{v}\) in
\(V\) so that
\(T(\uvec{v}) = \uvec{w}\text{.}\)
Suppose the domain space
\(V\) is finite-dimensional with spanning set
\(S = \{\uvec{v}_1,\uvec{v}_2,\uvec{v}_3\}\text{.}\)
(a)
Reword the above definition of
\(\im T\) using these spanning vectors:
a vector
\(\uvec{w}\) in
\(W\) is in
\(\im T\) precisely when there exists a
of
\(\uvec{v}_1,\uvec{v}_2,\uvec{v}_3\) so that
.
(b)
Reword the definition again in terms of the spanning
image vectors:
a vector
\(\uvec{w}\) in
\(W\) is in
\(\im T\) precisely when there exists a
of
\(T(\uvec{v}_1),T(\uvec{v}_2),T(\uvec{v}_3)\) so that
.
(c) Summarize.
If
\(\{\uvec{v}_1,\uvec{v}_2,\dotsc,\uvec{v}_m\}\) is a spanning set for
\(V\text{,}\) then
\(\{T(\uvec{v}_1),T(\uvec{v}_2),\dotsc,T(\uvec{v}_m)\}\) is
for
\(\im T\text{.}\)
A spanning set is fine, but a basis is better.
Discovery 43.6 . Image basis example.
Consider again the transformation
\(\funcdef{T = L_B}{\matrixring_{2}(\R)}{\matrixring_{2}(\R)}\) from
Task c of
Discovery 43.3 , defined by
\(L_B(A) = B A\) for
\begin{equation*}
B = \begin{bmatrix} 1 \amp 1 \\ 0 \amp 0 \end{bmatrix} \text{.}
\end{equation*}
Also recall the standard basis for \(\matrixring_{2}(\R)\text{:}\)
\begin{align*}
E_{11} \amp = \begin{bmatrix} 1 \amp 0 \\ 0 \amp 0 \end{bmatrix}, \amp
E_{12} \amp = \begin{bmatrix} 0 \amp 1 \\ 0 \amp 0 \end{bmatrix}, \amp
E_{21} \amp = \begin{bmatrix} 0 \amp 0 \\ 1 \amp 0 \end{bmatrix}, \amp
E_{22} \amp = \begin{bmatrix} 0 \amp 0 \\ 0 \amp 1 \end{bmatrix}\text{.}
\end{align*}
(a)
Compute the images of the standard basis vectors:
\begin{equation*}
T(E_{11}), \;\; T(E_{12}), \;\; T(E_{21}), \;\; T(E_{22}) \text{.}
\end{equation*}
Task c of
Discovery 43.5 says these image vectors should form a spanning set for
\(\im L_B\text{.}\) Do they form a basis for
\(\im L_B\text{?}\)
(b)
Replace the first two standard basis vectors for
\(V = \matrixring_{2}(\R)\) with your two basis vectors for
\(\ker L_B\) that you computed in
Task c of
Discovery 43.3 .
Write
\(A_1,A_2\) for these kernel vectors. Is
\(\{A_1,A_2,E_{21},E_{22}\}\) still a basis for the domain space
\(V = \matrixring_{2}(\R)\text{?}\)
If so, then
\(\{T(A_1),T(A_2),T(E_{21}),T(E_{22})\}\) should again be a spanning set for
\(\im L_B\text{.}\) Is it a basis for
\(\im L_B\text{?}\) If not, can it easily be
reduced to a basis for
\(\im L_B\text{?}\)
(c) Summarize the pattern.
To determine a basis for the image of transformation
\(\funcdef{T}{V}{W}\text{,}\) .
Discovery 43.7 .
Create a linear transformation
\(\funcdef{T}{\poly_3(\R)}{\matrixring_2(\R)}\) that has kernel
precisely \(\Span \{ 1 + x^2, 1 - x^3 \}\text{.}\)
Hint .
A transformation does not have to be specified by a formula; see
Procedure 42.3.1 .