Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\require{cancel}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\correct}{\boldsymbol{\checkmark}}
\newcommand{\incorrect}{\boldsymbol{\times}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\leftsub}[3][1]{\mathord{{}_{#2\mkern-#1mu}#3}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\sqrtop}{sqrt}
\newcommand{\lgcnot}{\neg}
\newcommand{\lgcand}{\wedge}
\newcommand{\lgcor}{\vee}
\newcommand{\lgccond}{\rightarrow}
\newcommand{\lgcbicond}{\leftrightarrow}
\newcommand{\lgcimplies}{\Rightarrow}
\newcommand{\lgcequiv}{\Leftrightarrow}
\newcommand{\lgctrue}{\mathrm{T}}
\newcommand{\lgcfalse}{\mathrm{F}}
\newcommand{\boolnot}[1]{{#1}'}
\newcommand{\boolzero}{\mathbf{0}}
\newcommand{\boolone}{\mathbf{1}}
\newcommand{\setdef}[2]{\left\{\mathrel{}#1\mathrel{}\middle|\mathrel{}#2\mathrel{}\right\}}
\newcommand{\inlinesetdef}[2]{\{\mathrel{}#1\mathrel{}\mid\mathrel{}#2\mathrel{}\}}
\let\emptyword\emptyset
\renewcommand{\emptyset}{\varnothing}
\newcommand{\relcmplmnt}{\smallsetminus}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\cmplmnt}[1]{{#1}^{\mathrm{c}}}
\newcommand{\disjunion}{\sqcup}
\newcommand{\cartprod}{\times}
\newcommand{\words}[1]{{#1}^\ast}
\newcommand{\length}[1]{\abs{#1}}
\newcommand{\powsetbare}{\mathcal{P}}
\newcommand{\powset}[1]{\powsetbare(#1)}
\newcommand{\funcdef}[4][\to]{#2\colon #3 #1 #4}
\newcommand{\ifuncto}{\hookrightarrow}
\newcommand{\ifuncdef}[3]{\funcdef[\ifuncto]{#1}{#2}{#3}}
\newcommand{\sfuncto}{\twoheadrightarrow}
\newcommand{\sfuncdef}[3]{\funcdef[\sfuncto]{#1}{#2}{#3}}
\newcommand{\funcgraphbare}{\Delta}
\newcommand{\funcgraph}[1]{\funcgraphbare(#1)}
\newcommand{\relset}[3]{#1_{{} #2 #3}}
\newcommand{\gtset}[2]{\relset{#1}{\gt}{#2}}
\newcommand{\posset}[1]{\gtset{#1}{0}}
\newcommand{\geset}[2]{\relset{#1}{\ge}{#2}}
\newcommand{\nnegset}[1]{\geset{#1}{0}}
\newcommand{\neqset}[2]{\relset{#1}{\neq}{#2}}
\newcommand{\nzeroset}[1]{\neqset{#1}{0}}
\newcommand{\ltset}[2]{\relset{#1}{\lt}{#2}}
\newcommand{\leset}[2]{\relset{#1}{\le}{#2}}
\newcommand{\natnumlt}[1]{\ltset{\N}{#1}}
\DeclareMathOperator{\id}{id}
\newcommand{\inclfunc}[2]{\iota_{#1}^{#2}}
\newcommand{\projfunc}[1]{\rho_{#1}}
\DeclareMathOperator{\proj}{proj}
\newcommand{\funcres}[2]{\left.{#1}\right\rvert_{#2}}
\newcommand{\altfuncres}[2]{\left.{#1}\right\rvert{#2}}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\flr}{flr}
\newcommand{\floor}[1]{\lfloor {#1} \rfloor}
\newcommand{\funccomp}{\circ}
\newcommand{\funcinvimg}[2]{\inv{#1}\left({#2}\right)}
\newcommand{\card}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\cardop}{card}
\DeclareMathOperator{\ncardop}{\#}
\newcommand{\EngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \mathrm{c}, \, \dotsc, \, \mathrm{y}, \, \mathrm{z} \}}
\newcommand{\ShortEngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \dotsc, \, \mathrm{z} \}}
\newcommand{\eqclass}[1]{\left[#1\right]}
\newcommand{\partorder}{\preceq}
\newcommand{\partorderstrict}{\prec}
\newcommand{\npartorder}{\npreceq}
\newcommand{\subgraph}{\preceq}
\newcommand{\subgraphset}[1]{\mathcal{S}(#1)}
\newcommand{\connectedsubgraphset}[1]{\mathcal{C}(#1)}
\newcommand{\permcomb}[3]{{#1}(#2,#3)}
\newcommand{\permcombalt}[3]{{#1}^{#2}_{#3}}
\newcommand{\permcombaltalt}[3]{{\leftsub{#2}{#1}}_{#3}}
\newcommand{\permutation}[2]{\permcomb{P}{#1}{#2}}
\newcommand{\permutationalt}[2]{\permcombalt{P}{#1}{#2}}
\newcommand{\permutationaltalt}[2]{{\permcombaltalt{P}{#1}{#2}}}
\newcommand{\combination}[2]{\permcomb{C}{#1}{#2}}
\newcommand{\combinationalt}[2]{\permcombalt{C}{#1}{#2}}
\newcommand{\combinationaltalt}[2]{{\permcombaltalt{C}{#1}{#2}}}
\newcommand{\choosefuncformula}[3]{\frac{#1 !}{#2 ! \, #3 !}}
\DeclareMathOperator{\matrixring}{M}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Print
Activities 14.5 Activities
Activity 14.1 .
Draw all possible simple graphs with \(4\) vertices.
Activity 14.2 .
Suppose \(G = (V,E)\) is a graph. Decide the truth of the following statement.
Every pair of a subset \(V' \subseteq V\) and a subcollection \(E' \subseteq E\) defines a subgraph \(G' = (V',E')\) of \(G\text{.}\)
Activity 14.3 .
Draw a graph where the nodes are students present in today’s class. Draw edges between pairs of students that are in the same group today. Additionally, draw an edge between a member of your group and another student if that pair was in a group together last class.
Activity 14.4 .
(a)
(b)
(c)
Activity 14.5 .
Consider the website Facebook as a graph where vertices are profiles and edges represent “friendship”.
(a)
Should this graph be a directed graph? Why or why not?
(b)
Is this graph simple? complete? Justify your answers.
(c)
What does the degree of a vertex represent?
(d)
Could this graph have isolated vertices?
(e)
Suppose the following graph is a subgraph of the Facebook graph.
(i)
What is the largest party one of these people could throw where each party-goer is Facebook friends with every other party-goer? Justify your answer.
(ii)
Assume all of the people in this graph live in the same geographic area. Which pair of non-friends are most likely to become friends in the future? Which pair of non-friends are least likely to become friends in the future? Justify your answers.