Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\require{cancel}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\correct}{\boldsymbol{\checkmark}}
\newcommand{\incorrect}{\boldsymbol{\times}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\leftsub}[3][1]{\mathord{{}_{#2\mkern-#1mu}#3}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\sqrtop}{sqrt}
\newcommand{\lgcnot}{\neg}
\newcommand{\lgcand}{\wedge}
\newcommand{\lgcor}{\vee}
\newcommand{\lgccond}{\rightarrow}
\newcommand{\lgcbicond}{\leftrightarrow}
\newcommand{\lgcimplies}{\Rightarrow}
\newcommand{\lgcequiv}{\Leftrightarrow}
\newcommand{\lgctrue}{\mathrm{T}}
\newcommand{\lgcfalse}{\mathrm{F}}
\newcommand{\boolnot}[1]{{#1}'}
\newcommand{\boolzero}{\mathbf{0}}
\newcommand{\boolone}{\mathbf{1}}
\newcommand{\setdef}[2]{\left\{\mathrel{}#1\mathrel{}\middle|\mathrel{}#2\mathrel{}\right\}}
\newcommand{\inlinesetdef}[2]{\{\mathrel{}#1\mathrel{}\mid\mathrel{}#2\mathrel{}\}}
\let\emptyword\emptyset
\renewcommand{\emptyset}{\varnothing}
\newcommand{\relcmplmnt}{\smallsetminus}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\cmplmnt}[1]{{#1}^{\mathrm{c}}}
\newcommand{\disjunion}{\sqcup}
\newcommand{\cartprod}{\times}
\newcommand{\words}[1]{{#1}^\ast}
\newcommand{\length}[1]{\abs{#1}}
\newcommand{\powsetbare}{\mathcal{P}}
\newcommand{\powset}[1]{\powsetbare(#1)}
\newcommand{\funcdef}[4][\to]{#2\colon #3 #1 #4}
\newcommand{\ifuncto}{\hookrightarrow}
\newcommand{\ifuncdef}[3]{\funcdef[\ifuncto]{#1}{#2}{#3}}
\newcommand{\sfuncto}{\twoheadrightarrow}
\newcommand{\sfuncdef}[3]{\funcdef[\sfuncto]{#1}{#2}{#3}}
\newcommand{\funcgraphbare}{\Delta}
\newcommand{\funcgraph}[1]{\funcgraphbare(#1)}
\newcommand{\relset}[3]{#1_{{} #2 #3}}
\newcommand{\gtset}[2]{\relset{#1}{\gt}{#2}}
\newcommand{\posset}[1]{\gtset{#1}{0}}
\newcommand{\geset}[2]{\relset{#1}{\ge}{#2}}
\newcommand{\nnegset}[1]{\geset{#1}{0}}
\newcommand{\neqset}[2]{\relset{#1}{\neq}{#2}}
\newcommand{\nzeroset}[1]{\neqset{#1}{0}}
\newcommand{\ltset}[2]{\relset{#1}{\lt}{#2}}
\newcommand{\leset}[2]{\relset{#1}{\le}{#2}}
\newcommand{\natnumlt}[1]{\ltset{\N}{#1}}
\DeclareMathOperator{\id}{id}
\newcommand{\inclfunc}[2]{\iota_{#1}^{#2}}
\newcommand{\projfunc}[1]{\rho_{#1}}
\DeclareMathOperator{\proj}{proj}
\newcommand{\funcres}[2]{\left.{#1}\right\rvert_{#2}}
\newcommand{\altfuncres}[2]{\left.{#1}\right\rvert{#2}}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\flr}{flr}
\newcommand{\floor}[1]{\lfloor {#1} \rfloor}
\newcommand{\funccomp}{\circ}
\newcommand{\funcinvimg}[2]{\inv{#1}\left({#2}\right)}
\newcommand{\card}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\cardop}{card}
\DeclareMathOperator{\ncardop}{\#}
\newcommand{\EngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \mathrm{c}, \, \dotsc, \, \mathrm{y}, \, \mathrm{z} \}}
\newcommand{\ShortEngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \dotsc, \, \mathrm{z} \}}
\newcommand{\eqclass}[1]{\left[#1\right]}
\newcommand{\partorder}{\preceq}
\newcommand{\partorderstrict}{\prec}
\newcommand{\npartorder}{\npreceq}
\newcommand{\subgraph}{\preceq}
\newcommand{\subgraphset}[1]{\mathcal{S}(#1)}
\newcommand{\connectedsubgraphset}[1]{\mathcal{C}(#1)}
\newcommand{\permcomb}[3]{{#1}(#2,#3)}
\newcommand{\permcombalt}[3]{{#1}^{#2}_{#3}}
\newcommand{\permcombaltalt}[3]{{\leftsub{#2}{#1}}_{#3}}
\newcommand{\permutation}[2]{\permcomb{P}{#1}{#2}}
\newcommand{\permutationalt}[2]{\permcombalt{P}{#1}{#2}}
\newcommand{\permutationaltalt}[2]{{\permcombaltalt{P}{#1}{#2}}}
\newcommand{\combination}[2]{\permcomb{C}{#1}{#2}}
\newcommand{\combinationalt}[2]{\permcombalt{C}{#1}{#2}}
\newcommand{\combinationaltalt}[2]{{\permcombaltalt{C}{#1}{#2}}}
\newcommand{\choosefuncformula}[3]{\frac{#1 !}{#2 ! \, #3 !}}
\DeclareMathOperator{\matrixring}{M}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 23.1 Binomial coefficients
binomial
an expression of the form \((x + y)^n\text{,}\) where \(n \in \N\) and \(x,y\) are real numbers (or elements of any commutative ring with identity)
Example 23.1.1 . Expanding binomials.
Expanding binomials gets more complicated as \(n\) increases.
\begin{align*}
(x + y)^2 \amp = x^2 + 2 x y + y^2 \\
(x + y)^3 \amp = (x + y) (x^2 + 2 x y + y^2) = x^3 + 3 x^2 y + 3 x y^2 + y^3 \\
(x + y)^4 \amp = (x + y) (x^3 + 3 x^2 y + 3 x y^2 + y^3) = x^4 + 4 x^3 y + 6 x^2 y^2 + 4 x y^3 + y^4 \\
(x + y)^5 \amp = (x + y) (x^4 + 4 x^3 y + 6 x^2 y^2 + 4 x y^3 + y^4) \\
\amp = x^5 + 5 x^4 y + 10 x^3 y^2 + 10 x^2 y^3 + 5 x y^4 + y^5 \\
\amp \vdots
\end{align*}
The symmetry in each of these expansions should be expected: we would get the same expression in the summation opposite order if we swapped \(x\) and \(y\text{,}\) since \((x + y)^n = (y + x)^n\text{.}\)
binomial coefficient
a number appearing as a coefficient in the expansion of \((x + y)^n\)
\(\displaystyle \binom{n}{k}\)
the \(\nth[k]\) coefficient in the expansion of \((x + y)^n\) (\(0 \le k \le n\) )
To better understand the complexity of binomial expansions, we should look for and exploit patterns. We have already expanded some binomial expressions for small exponents in
Example 23.1.1 — let’s extract the binomial coefficients from those expressions.
\begin{gather*}
\tbinom{0}{0} \\
\tbinom{1}{0} \quad \tbinom{1}{1} \\
\tbinom{2}{0} \quad \tbinom{2}{1} \quad \tbinom{2}{2} \\
\tbinom{3}{0} \quad \tbinom{3}{1} \quad \tbinom{3}{2} \quad \tbinom{3}{3} \\
\tbinom{4}{0} \quad \tbinom{4}{1} \quad \tbinom{4}{2} \quad
\tbinom{4}{3} \quad \tbinom{4}{4}\\
\tbinom{5}{0} \quad \tbinom{5}{1} \quad \tbinom{5}{2} \quad
\tbinom{5}{3} \quad \tbinom{5}{4} \quad \tbinom{5}{5}\\
\tbinom{6}{0} \quad \tbinom{6}{1} \quad \tbinom{6}{2} \quad
\tbinom{6}{3} \quad \tbinom{6}{4} \quad \tbinom{6}{5} \quad
\tbinom{6}{6}\\
\vdots
\end{gather*}
\begin{equation*}
\longrightarrow
\end{equation*}
\begin{gather*}
\;1\; \\
\;1\; \quad \;1\; \\
\;1\; \quad \;2\; \quad \;1\; \\
\;1\; \quad \;3\; \quad \;3\; \quad
\;1\;\\
\;1\; \quad \;4\; \quad \;6\; \quad
\;4\; \quad \;1\;\\
\;1\; \quad \;5\; \quad \;10\; \quad
10\; \quad \;5\; \quad \;1\;\\
\;1\; \quad \;6\; \quad \;15\; \quad
20 \quad \;15\; \quad \;6\; \quad
\;1\;\\
\vdots
\end{gather*}
Figure 23.1.2. Pascal’s triangle.
Theorem 23.1.4 . Binomial Theorem.
For every \(x,y\in\R\) and every \(n \in \N\text{,}\) we have
\begin{equation*}
(x+y)^n
= \sum_{k=0}^n \binom{n}{k}\,x^{n-k}y^k
= \binom{n}{0}\,x^n + \binom{n}{1}\,x^{n-1}y + \binom{n}{2}\,x^{n-2}y^2
+ \dotsb + \binom{n}{n-1}\,xy^{n-1} + \binom{n}{n}\,y^n,
\end{equation*}
where
\begin{equation*}
\binom{n}{k} = \combinationalt{n}{k} = \choosefuncformula{n}{k}{(n-k)} \text{.}
\end{equation*}
Informal direct proof outline.
Write \((x+y)^n = (x+y)(x+y)\dotsm(x+y)\text{,}\) with \(n\) factors. To expand this out, we generalize the FOIL method: from each factor, choose either \(x\) or \(y\text{,}\) then multiply all your choices together. Then add the results of all possible such products. For example,
\begin{align*}
(x + y)^2 \amp = x x + x y + y x + y y = x^2 + 2 x y + y^2, \\
(x + y)^3 \amp = x x x + x x y + x y x + x y y + y x x + y x y + y y x + y y y = x^3 + 3 x^2y + 3 x y^2 + y^3.
\end{align*}
When forming a specific product, if you chose \(y\) for \(k\) out of \(n\) choices, you must have chosen \(x\) for the remaining \(n - k\) of the \(n\) choices. The result will be \(x^{n - k} y^k\text{.}\) So to figure out the coefficient on \(x^{n - k} y^k\text{,}\) just count how many ways there are to choose \(y\) for \(k\) of the \(n\) choices. This is just \(\combinationalt{n}{k}\text{,}\) where we choose \(k\) factors of \((x+y)\) to give us a \(y\text{,}\) and the rest to give us an \(x\text{.}\)
Induction proof outline. Base case.
The cases of \(n=0,1\) are trivially true.
Induction step.
Use the binomial formula for \((x+y)^{n - 1}\) to obtain the binomial formula for \((x + y)^n\text{,}\) by manipulating
\begin{align*}
(x + y)^n \amp = (x + y) (x + y)^{n - 1} \\
\amp = (x + y) \bbrac{
\combinationalt{n-1}{0} \, x^{n - 1} + \combinationalt{n - 1}{1} \, x^{n - 2} y + \dotsb + \combinationalt{n - 1}{n - 1} \, y^{n - 1}
}\text{.}
\end{align*}
Worked Example 23.1.5 . Expanding a binomial.
Expand \((x-2)^5\text{.}\)
Solution .
We saw that the \(n = 5\) row of Pascal’s triangle is \(1,5,10,10,5,1\text{.}\)
\begin{align*}
\amp (x - 2)^5 \\
\amp \bbrac{x + (- 2)}^5 \\
\amp = \binom{5}{0} x^5 + \binom{5}{1} x^4 (-2) + \binom{5}{2} x^3 (-2)^2
+ \binom{5}{3} x^2 (-2)^3 + \binom{5}{4} x (-2)^4 + \binom{5}{5} (-2)^5\\
\amp = x^5 - 10 x^4 + 40 x^3 - 80 x^2 + 80 x - 32.
\end{align*}
Worked Example 23.1.6 . Determining a specific coefficient in a binomial expansion.
What is the coefficient on the \(x^4 y^9\) term in the expansion of \((3 x + y)^{13} \text{?}\)
Solution .
Considering
\begin{equation*}
(3 x + y)^{13} = \bbrac{(3 x) + y}^{13} \text{,}
\end{equation*}
the \(x^4 y^9\) term is
\begin{align*}
\binom{13}{9} (3x)^4 y^9
\amp = \choosefuncformula{13}{9}{4} \cdot 3^4 x^4 y^9\\
\amp = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 27 \cdot 3}{4\cdot 3 \cdot 2} x^4 y^9 \\
\amp = (13 \cdot 3 \cdot 11 \cdot 5 \cdot 27) x^4 y^9 \text{.}
\end{align*}
So the desired coefficient is \(57,915\text{.}\)