Skip to main content
Logo image

Appendix B Index of Notation

Symbol Description Location
\(\lgcnot A\) logical negation of statement \(A\) Item
\(A \lgcand B\) logical conjunction of statements \(A\) and \(B\) Item
\(A \lgcor B\) logical disjunction of statements \(A\) and \(B\) Item
\(A \lgccond B\) logical conditional where statement \(A\) implies statement \(B\) Item
\(A \lgcbicond B\) logical biconditional where each of statements \(A\) and \(B\) implies the other Item
\(A \lgcimplies B\) statement \(A\) logically implies statement \(B\text{,}\) so that conditional \(A \lgccond B\) is a tautology Item
\(A \lgcequiv B \) statements \(A\) and \(B\) are equivalent Item
\(\boolnot{x}\) Boolean negation Item
\(A(x)\) a predicate statement \(A\) whose truth value depends on the free variable \(x\) Item
\(A(x,y)\) a predicate statement \(A\) whose truth value depends on the free variables \(x\) and \(y\) Item
\(\forall x\) the universal quantifier applied to the free variable \(x\) Item
\(\exists x\) the existential quantifier applied to the free variable \(x\) Item
\(A_1, A_2, \dotsc, A_m \therefore C \) an argument with premises \(A_1, A_2, \dotsc, A_m\) and conclusion \(C\) Item
\(\begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_m \\ \hline C \end{array}\) an argument with premises \(A_1, A_2, \dotsc, A_m\) and conclusion \(C\) Item
\(x \in S\) object \(x\) is an element of set \(S\) Item
\(\{a,b,c,\dotsc\}\) a set defined by listing its elements, enclosed in braces Paragraph
\(\N\) the set of natural numbers Item
\(\Z\) the set of integers Item
\(\Q\) the set of rational numbers Item
\(\R\) the set of real numbers Item
\(\emptyset\) the empty set Item
\(A \subseteq B\) set \(A\) is a subset of set \(B\) Item
\(A \subsetneqq B\) set \(A\) is a proper subset of set \(B\) Item
\(\cmplmnt{A}\) the complement of \(A\) relative to some universal set Item
\(B \relcmplmnt A\) the complement of \(A\) relative to some universal set Item
\(\I\) the set of irrational real numbers Item
\(A \union B\) the union of sets \(A\) and \(B\) Item
\(A \intersection B\) the intersection of \(A\) and \(B\) Item
\(A \disjunion B\) the disjoint union of sets \(A\) and \(B\) Item
\(A \cartprod B\) the Cartesian product of \(A\) and \(B\) Item
\(A^n\) the Cartesian product \(A \cartprod A \cartprod \dotsb \cartprod A\) involving \(n\) copies of \(A\) Item
\(\words{\Sigma}\) the set of words using alphabet set \(\Sigma\) Item
\(\length{w}\) length of the word \(w \in \words{\Sigma}\) Item
\(\words{\Sigma}_n\) for \(n \in \N\text{,}\) the subset of \(\words{\Sigma}\) consisting of all words of length \(n\) Item
\(\emptyword\) the empty word Item
\(\powset{A}\) the power set of the set \(A\) Item
\(\funcdef{f}{A}{B}\) \(f\) is a function with domain \(A\) and codomain \(B\) Item
\(f(a) = b\) function \(\funcdef{f}{A}{B}\) associates the codomain element \(b\in B\) to the domain element \(a\in A\) Item
\(a \mapsto b\) alternative notation for \(f(a) = b\) Item
\(\funcgraph{f}\) graph of function \(f\) Item
\(f(A)\) the image of function \(\funcdef{f}{A}{B}\) Item
\(f(A')\) the image of function \(\funcdef{f}{A}{B}\) on a subset \(A' \subseteq A\) Item
\(\sfuncdef{f}{A}{B}\) function \(f\) is surjective Item
\(\ifuncdef{f}{A}{B}\) function \(f\) is injective Item
\(\funcdef{\id_A}{A}{A}\) the identity function on on set \(A\) Item
\(\funcdef{\inclfunc{A}{X}}{A}{X}\) the inclusion function on subset \(A \subseteq X\) Item
\(\funcdef{\projfunc{i}}{A_1 \cartprod A_2 \cartprod \dotsb \cartprod A_n}{A_i}\) the projection function onto the \(\nth[i]\) factor \(A_i\) in the Cartesian product
\begin{equation*} A_1 \cartprod A_2 \cartprod \dotsb \cartprod A_n \end{equation*}
Paragraphs
\(\funcdef{\proj_i}{A_1 \cartprod A_2 \cartprod \dotsb \cartprod A_n}{A_i}\) alternative notation for \(\projfunc{i}\) Paragraphs
\(\funcres{f}{A}\) restriction of function \(\funcdef{f}{X}{Y}\) to subset \(A \subseteq X\) Item
\(\altfuncres{f}{A}\) alternative domain restriction notation Item
\(\res_A^X f\) alternative domain restriction notation Item
\(g \funccomp f\) the composition of functions \(f\) and \(g\) Item
\(\funcinvimg{f}{C}\) the inverse image of the subset \(C \subseteq B\) under the function \(\funcdef{f}{A}{B}\) Item
\(\funcdef{\inv{f}}{B}{A}\) the inverse function associate to bijective function \(\funcdef{f}{A}{B}\) Item
\(\natnumlt{m}\) the set of natural numbers that are less than \(m\) Item
\(a_k\) \(\nth[k]\) term in a sequence Item
\(\{a_k\}\) the collection of terms in a sequence Item
\(\{a_k\}_0^m\) the collection of terms in a finite sequence Item
\(\{a_k\}_0^\infty\) the collection of terms in an infinite sequence Item
\(\card{A}\) cardinality of the set \(A\) Item
\(\cardop A\) alternative notation for the cardinality of the set \(A\) Item
\(\ncardop\{\dots\}\) alternative notation for the cardinality of the set defined by \(\{\dots\}\) Item
\(\card{A} = \infty\) set \(A\) is infinite Item
\(\card{A} \lt \infty\) set \(A\) is finite Item
\(\deg v\) degree of vertex \(v\) Item
\(\card{E}\) the number of edges in the graph \(G = (V,E)\) Item
\(G' \subgraph G\) graph \(G'\) is a subgraph of graph \(G\) Item
\(K_n\) the unique complete graph with \(n\) vertices Item 1
\(a \mathrel{R} b\) element \(a \in A\) is related to element \(b \in B\) by relation \(R\) Item
\(R_1 \union R_2\) union of relations \(R_1,R_2\) Item
\(R_1 \intersection R_2\) intersection of relations \(R_1,R_2\) Item
\(\cmplmnt{R}\) complement of relation \(R\) Item
\(a\ \not R\ b\) alternative notation for \(a \mathrel{\cmplmnt{R}} b\) Item
\(\inv{R}\) inverse of the relation \(R\) Item
\(a \mathrel{\emptyset} b\) the empty relation between elements \(a\) and \(b\) (always false) Item
\(a \mathrel{U} b\) the universal relation between elements \(a\) and \(b\) (always true) Item
\(a \equiv b\) \(a\) is related to \(b\) by the equivalence relation \(\mathord{\equiv}\text{;}\) in other words, \(a\) is somehow equivalent to \(b\) Item
\(m_1 \equiv_n m_2\) integers \(m_1,m_2\) are equivalent modulo \(n\) Item
\(\eqclass{a}\) the equivalence class of the element \(a \in A\) relative to some specific equivalence relation on \(A\) Item
\(A / \mathord{\equiv} \) the quotient of \(A\) relative to equivalence relation \(\mathord{\equiv}\) Item
\(a \mathord{\partorder} b\) \(a\) is related to \(b\) by the partial order \(\mathord{\partorder}\text{;}\) in other words, \(a\) is somehow “smaller than or same size as” \(b\) Item
\(a \partorderstrict b\) \(a \partorder b\) but \(a \neq b\) Item
\(n!\) factorial \(n! = n (n - 1) (n - 2) \dotsm 2 \cdot 1\) Item
\(\permutation{n}{k}\) the number of permutations of size \(k\) taken from a set of size \(n\) Item
\(\permutationalt{n}{k}\) alternative notation for \(\permutation{n}{k}\) Item
\(\permutationaltalt{n}{k}\) alternative notation for \(\permutation{n}{k}\) Item
\(\combination{n}{k}\) the number of combination of size \(k\) taken from a set of size \(n\) Item
\(\combinationalt{n}{k}\) alternative notation for \(\combination{n}{k}\) Item
\(\combinationaltalt{n}{k}\) alternative notation for \(\combination{n}{k}\) Item
\(\binom{n}{k}\) the \(\nth[k]\) coefficient in the expansion of \((x + y)^n\) Item
\(\binom{n}{i_1,i_2,\dotsc,i_m}\) the coefficient on the term \(x_1^{i_1} x_2^{i_2} \dotsm x_m^{i_m}\) in the expansion of \((x_1 + x_2 + \dotsm + x_m)^n\) Item