Skip to main content
Logo image

Exercises 3.3 Exercises

Creating truth tables.

In each of Exercises 1–2, write out the truth table for the given boolean polynomial.

1.

\(p(x,y) = (x \lgcand y)' \lgcand x' \text{.}\)

2.

\(q(x,y,z) = (x \lgcor y)' \lgcand (z \lgcor x) \lgcand y \text{.}\)

3.

Explain why the boolean polynomial \(p(x,y) = x \lgcor y \lgcor y'\) is not in disjunctive form.

Disjunctive normal form from a truth table.

In each of Exercises 4–6, write out a boolean polynomial in disjunctive normal form that has the given truth table.

4.

\(x\) \(y\) \(p(x,y)\)
\(1\) \(1\) \(1\)
\(1\) \(0\) \(1\)
\(0\) \(1\) \(1\)
\(0\) \(0\) \(0\)

5.

\(x\) \(y\) \(p(x,y)\)
\(1\) \(1\) \(1\)
\(1\) \(0\) \(0\)
\(0\) \(1\) \(1\)
\(0\) \(0\) \(0\)

6.

\(x\) \(y\) \(z\) \(p(x,y,z)\)
\(1\) \(1\) \(1\) \(1\)
\(1\) \(1\) \(0\) \(0\)
\(1\) \(0\) \(1\) \(0\)
\(1\) \(0\) \(0\) \(0\)
\(0\) \(1\) \(1\) \(1\)
\(0\) \(1\) \(0\) \(0\)
\(0\) \(0\) \(1\) \(0\)
\(0\) \(0\) \(0\) \(0\)

Disjunctive normal form from a boolean polynomial.

In each of Exercises 7–9, write out a boolean polynomial in disjunctive normal form that is equivalent to the given boolean polynomial.

7.

\(p(x,y,z) = (x \lgcor y) \lgcand z \text{.}\)

8.

\(q(x,y,z) = \bigl[(x \lgcand y') \lgcor (x \lgcand z)\bigr]' \lgcor x' \text{.}\)

9.

\(r(x,y,z) = (x \lgcand y') \lgcor (x \lgcand z) \lgcor (x \lgcand y) \text{.}\)