Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\require{cancel}
\newcommand{\nth}[1][n]{{#1}^{\mathrm{th}}}
\newcommand{\bbrac}[1]{\bigl(#1\bigr)}
\newcommand{\Bbrac}[1]{\Bigl(#1\Bigr)}
\newcommand{\correct}{\boldsymbol{\checkmark}}
\newcommand{\incorrect}{\boldsymbol{\times}}
\newcommand{\inv}[2][1]{{#2}^{-{#1}}}
\newcommand{\leftsub}[3][1]{\mathord{{}_{#2\mkern-#1mu}#3}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\sqrtop}{sqrt}
\newcommand{\lgcnot}{\neg}
\newcommand{\lgcand}{\wedge}
\newcommand{\lgcor}{\vee}
\newcommand{\lgccond}{\rightarrow}
\newcommand{\lgcbicond}{\leftrightarrow}
\newcommand{\lgcimplies}{\Rightarrow}
\newcommand{\lgcequiv}{\Leftrightarrow}
\newcommand{\lgctrue}{\mathrm{T}}
\newcommand{\lgcfalse}{\mathrm{F}}
\newcommand{\boolnot}[1]{{#1}'}
\newcommand{\boolzero}{\mathbf{0}}
\newcommand{\boolone}{\mathbf{1}}
\newcommand{\setdef}[2]{\left\{\mathrel{}#1\mathrel{}\middle|\mathrel{}#2\mathrel{}\right\}}
\newcommand{\inlinesetdef}[2]{\{\mathrel{}#1\mathrel{}\mid\mathrel{}#2\mathrel{}\}}
\let\emptyword\emptyset
\renewcommand{\emptyset}{\varnothing}
\newcommand{\relcmplmnt}{\smallsetminus}
\newcommand{\union}{\cup}
\newcommand{\intersection}{\cap}
\newcommand{\cmplmnt}[1]{{#1}^{\mathrm{c}}}
\newcommand{\disjunion}{\sqcup}
\newcommand{\cartprod}{\times}
\newcommand{\words}[1]{{#1}^\ast}
\newcommand{\length}[1]{\abs{#1}}
\newcommand{\powsetbare}{\mathcal{P}}
\newcommand{\powset}[1]{\powsetbare(#1)}
\newcommand{\funcdef}[4][\to]{#2\colon #3 #1 #4}
\newcommand{\ifuncto}{\hookrightarrow}
\newcommand{\ifuncdef}[3]{\funcdef[\ifuncto]{#1}{#2}{#3}}
\newcommand{\sfuncto}{\twoheadrightarrow}
\newcommand{\sfuncdef}[3]{\funcdef[\sfuncto]{#1}{#2}{#3}}
\newcommand{\funcgraphbare}{\Delta}
\newcommand{\funcgraph}[1]{\funcgraphbare(#1)}
\newcommand{\relset}[3]{#1_{{} #2 #3}}
\newcommand{\gtset}[2]{\relset{#1}{\gt}{#2}}
\newcommand{\posset}[1]{\gtset{#1}{0}}
\newcommand{\geset}[2]{\relset{#1}{\ge}{#2}}
\newcommand{\nnegset}[1]{\geset{#1}{0}}
\newcommand{\neqset}[2]{\relset{#1}{\neq}{#2}}
\newcommand{\nzeroset}[1]{\neqset{#1}{0}}
\newcommand{\ltset}[2]{\relset{#1}{\lt}{#2}}
\newcommand{\leset}[2]{\relset{#1}{\le}{#2}}
\newcommand{\natnumlt}[1]{\ltset{\N}{#1}}
\DeclareMathOperator{\id}{id}
\newcommand{\inclfunc}[2]{\iota_{#1}^{#2}}
\newcommand{\projfunc}[1]{\rho_{#1}}
\DeclareMathOperator{\proj}{proj}
\newcommand{\funcres}[2]{\left.{#1}\right\rvert_{#2}}
\newcommand{\altfuncres}[2]{\left.{#1}\right\rvert{#2}}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\flr}{flr}
\newcommand{\floor}[1]{\lfloor {#1} \rfloor}
\newcommand{\funccomp}{\circ}
\newcommand{\funcinvimg}[2]{\inv{#1}\left({#2}\right)}
\newcommand{\card}[1]{\left\lvert #1 \right\rvert}
\DeclareMathOperator{\cardop}{card}
\DeclareMathOperator{\ncardop}{\#}
\newcommand{\EngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \mathrm{c}, \, \dotsc, \, \mathrm{y}, \, \mathrm{z} \}}
\newcommand{\ShortEngAlphabet}{\{ \mathrm{a}, \, \mathrm{b}, \, \dotsc, \, \mathrm{z} \}}
\newcommand{\eqclass}[1]{\left[#1\right]}
\newcommand{\partorder}{\preceq}
\newcommand{\partorderstrict}{\prec}
\newcommand{\npartorder}{\npreceq}
\newcommand{\subgraph}{\preceq}
\newcommand{\subgraphset}[1]{\mathcal{S}(#1)}
\newcommand{\connectedsubgraphset}[1]{\mathcal{C}(#1)}
\newcommand{\permcomb}[3]{{#1}(#2,#3)}
\newcommand{\permcombalt}[3]{{#1}^{#2}_{#3}}
\newcommand{\permcombaltalt}[3]{{\leftsub{#2}{#1}}_{#3}}
\newcommand{\permutation}[2]{\permcomb{P}{#1}{#2}}
\newcommand{\permutationalt}[2]{\permcombalt{P}{#1}{#2}}
\newcommand{\permutationaltalt}[2]{{\permcombaltalt{P}{#1}{#2}}}
\newcommand{\combination}[2]{\permcomb{C}{#1}{#2}}
\newcommand{\combinationalt}[2]{\permcombalt{C}{#1}{#2}}
\newcommand{\combinationaltalt}[2]{{\permcombaltalt{C}{#1}{#2}}}
\newcommand{\choosefuncformula}[3]{\frac{#1 !}{#2 ! \, #3 !}}
\DeclareMathOperator{\matrixring}{M}
\newcommand{\uvec}[1]{\mathbf{#1}}
\newcommand{\zerovec}{\uvec{0}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 12.6 Exercises
1.
Prove: If \(B\) is finite and \(A \subseteq B\text{,}\) then \(A\) is finite and \(\card{A} \le \card{B}\text{.}\)
2.
Suppose that \(A\text{,}\) \(B\text{,}\) and \(C\) are finite subsets of a universal set \(U\text{.}\)
(a)
Prove: If \(A\) and \(B\) are disjoint, then \(\card{A \sqcup B} = \card{A} + \card{B}\text{.}\)
(b)
Prove: \(\card{A \cup B} = \card{A} + \card{B} - \card{A \cap B}\text{.}\)
(c)
Determine a similar formula for \(\card{A \cup B \cup C}\text{.}\)
Hint . Draw a Venn diagram first.
3.
Use induction to prove directly that if
\(\card{A} = n\) then
\(\card{\powset{A}} = 2^n\text{.}\) Use
Worked Example 12.2.7 as a model for your proof of the induction step.
4.
Prove: If \(\card{A} = \infty\) and \(A \subseteq B\text{,}\) then \(\card{B} = \infty\text{.}\)
5.
6.
Hint . First map the punctured circle \(\hat{S}\) onto some open interval in the \(x\) -axis by “unrolling” \(\hat{S}\text{.}\)
7.
Use
Example 12.3.7 and the function
\(f(x) = \tan x\) to prove that the interval
\((-\pi/2,\pi/2)\) and
\(\R\) have the same size.
Hint . The function \(f(x) = \tan x\) is not one-to-one, but it becomes one-to-one if you restrict its domain to an appropriate interval
8.
Prove that if \(A\) and \(B\) have the same size, then so do \(\powset{A}\) and \(\powset{B}\text{.}\)
9.
Suppose \(A\) is a set with \(\card{A} = n\text{.}\) Then we can enumerate its elements as \(A = \{a_1,a_2,\dotsc,a_n\}\text{.}\)
(a)
Construct a bijection from the power set of \(A\) to the set of words in the alphabet \(\Sigma = \{T,F\}\) of length \(n\text{.}\)
Note that there are two tasks required here.
Explicitly describe a function
\(\funcdef{f}{\powset{A}}{\words{\Sigma}_n}\) by describing the
input-output rule : give a detailed description of how, given a subset
\(B \subseteq A\text{,}\) the word
\(f(B)\) should be produced.
Prove that your function \(f\) is a bijection.
Hint . When determining the input-output rule for your function \(\funcdef{f}{\powset{A}}{\words{\Sigma}_n}\text{,}\) think of how one might construct an arbitrary subset of \(A\text{,}\) and then relate that process to a sequence of answers to \(n\) true/false questions.
(b)
Use
Task a to determine the cardinality of
\(\powset{A}\text{.}\) Explain.
(c)
Suppose
\(k\) is some fixed (but unknown) integer, with
\(0 \le k \le n\text{.}\) Let
\(\powset{A}_k\) represent the subset of
\(\powset{A}\) consisting of all subsets of
\(A\) that have exactly
\(k\) elements. Describe how your bijection from
Task a , could be used to count the elements of
\(\powset{A}_k\text{.}\)