Example 9.5.1. A Cartesian product of “small” sets.
Suppose \(A = \{ 1, 2 \}\) and \(B = \{ a, b, c \}\text{.}\) Then
\begin{equation*}
A \cartprod B = \{ (1,a), (1,b), (1,c), (2,a), (2,b), (2,c) \} \text{.}
\end{equation*}
\(B\) | |||||
\(3\) | \((a,3)\) | \((\alpha,3)\) | \((\phi,3)\) | \((z,3)\) | |
\(2\) | \((a,2)\) | \((\alpha,2)\) | \((\phi,2)\) | \((z,2)\) | |
\(1\) | \((a,1)\) | \((\alpha,1)\) | \((\phi,1)\) | \((z,1)\) | |
\(a\) | \(\alpha\) | \(\phi\) | \(z\) | \(A\) |