We can solve this using recursion! In
Example 11.2.4, we defined the following sequence of subsets of
\(\N\text{,}\)
\begin{gather*}
A_0 = \emptyset, \quad
A_1 = \{1\}, \quad
A_2 = \{1,2\}, \quad
A_3 = \{1,2,3\},\\
\dotsc, \quad
A_k = \{1, 2, \dotsc, k \}, \quad
\dotsc\text{,}
\end{gather*}
recursively. We can also express the sequence \(N_k = \card{\powset{A_k}}\) recursively. First, \(N_0 = 1\text{.}\) Then, since
\begin{equation*}
A_{k-1} = \{ 1, 2, \dotsc, k-1 \} \subsetneqq \{1,2,\dotsc,k-1,k\} = A_k,
\end{equation*}
we can consider
\(\powset{A_{k-1}} \subseteq \powset{A_k}\text{.}\) (See
Exercise 9.9.13.) In doing so, we can break
\(\powset{A_k}\) into the disjoint union
\begin{equation*}
\powset{A_k} = \powset{A_{k-1}} \sqcup \cmplmnt{\powset{A_{k-1}}}.
\end{equation*}
Notice that the elements of \(\powset{A_{k-1}}\) are precisely those subsets of \(A_k\) that do not contain the element \(k\text{,}\) and therefore the elements of \(\cmplmnt{\powset{A_{k-1}}}\) are precisely those subsets of \(A_k\) that do contain the element \(k\text{.}\) So
\begin{equation*}
B \in \powset{A_{k-1}} \quad \lgcimplies \quad B \cup \{k\} \in \cmplmnt{\powset{A_{k-1}}} \text{.}
\end{equation*}
This correspondence actually gives us a bijection
\begin{align*}
\powset{A_{k-1}} \amp \to \cmplmnt{\powset{A_{k-1}}}, \\
B \amp \mapsto B \cup \{k\}.
\end{align*}
(Check!)
Now we have
\begin{equation*}
N_{k-1} = \card{\powset{A_{k-1}}} = \card{\cmplmnt{\powset{A_{k-1}}}} \text{.}
\end{equation*}
Since
\begin{equation*}
\powset{A_k} = \powset{A_{k-1}} \sqcup \cmplmnt{\powset{A_{k-1}}} \text{,}
\end{equation*}
we then have
\begin{equation*}
N_k = N_{k-1} + N_{k-1} = 2 N_{k-1} \text{,}
\end{equation*}
a recursively defined sequence. Solving this recurrence relation by iteration yields
\begin{equation*}
N_k = 2^k \text{.}
\end{equation*}