It’s less messy to perform algebraic manipulations with letters, so assign
\begin{align*}
A \amp =
\begin{abmatrix}{rrrr}
1 \amp 3 \amp -2 \amp 2 \\
0 \amp 0 \amp 0 \amp 1 \\
0 \amp 0 \amp 1 \amp 0 \\
1 \amp 4 \amp 2 \amp -1
\end{abmatrix}
\text{,}\\
B \amp =
\begin{abmatrix}{rrrr}
4 \amp -11 \amp 14 \amp -3 \\
-1 \amp 3 \amp -4 \amp 1 \\
0 \amp 0 \amp 1 \amp 0 \\
0 \amp 1 \amp 0 \amp 0
\end{abmatrix}
\text{,}\\
C \amp =
\begin{abmatrix}{rrrr}
-8 \amp 2 \amp -9 \amp 7 \\
7 \amp 1 \amp 3 \amp -5 \\
2 \amp 6 \amp 6 \amp -4 \\
-8 \amp 1 \amp 9 \amp 3
\end{abmatrix}
\text{.}
\end{align*}
Then we have
\begin{gather*}
A X B - 5 I = C \\
A X B = C + 5 I \\
\inv{A} (A X B) \inv{B} = \inv{A} (C + 5 I) \inv{B} \\
(\inv{A} A) X (B \inv{B}) = \inv{A} (C + 5 I) \inv{B} \\
I X I = \inv{A} (C + 5 I) \inv{B} \\
X = \inv{A} (C + 5 I) \inv{B} \text{,}
\end{gather*}
assuming that both \(A\) and \(B\) are invertible.
Remember that order of matrix multiplication matters. In particular, we cannot rearrange \(A X B\) to either \(A B X\) or \(X A B\text{,}\) and we have been careful to cancel \(A\) and \(B\) by multiplying by \(\inv{A}\) on the left and by \(\inv{B}\) on the right on both sides of the equality.
Now back to the question of the invertibility of
\(A\) and
\(B\text{.}\) Per the hint, matrices
\(A\) and
\(B\) in this exercise match the matrices in
Exercise 5.6.7, where we verified that they are inverses of each other; that is,
\begin{align*}
\inv{A} \amp = B \text{,} \amp \inv{B} \amp = A \text{.}
\end{align*}
While normally there is no calculation advantage to expanding the brackets in our last algebraic expression above, in this case we might be able to further simplify our right-hand side a bit more:
\begin{gather*}
X = \inv{A} (C + 5 I) \inv{B} \\
X = \inv{A} (C + 5 I) A \\
X = \inv{A} C A + 5 \inv{A} I A \\
X = \inv{A} C A + 5 \inv{A} A \\
X = \inv{A} C A + 5 I \\
X = B C A + 5 I \text{.}
\end{gather*}
Once again, remember that order of matrix multiplication matters, and so while \(\inv{A} I A = I\) is true because first we may simplify \(I A = A\) before “cancelling” \(A\) with its inverse, we cannot similarly simplify \(\inv{A} C A\) because the \(A\) is not right next to its inverse to “cancel.”
Our final algebraic expression above now tells us what to calculate:
\begin{align*}
B C \amp =
\begin{abmatrix}{rrrr}
4 \amp -11 \amp 14 \amp -3 \\
-1 \amp 3 \amp -4 \amp 1 \\
0 \amp 0 \amp 1 \amp 0 \\
0 \amp 1 \amp 0 \amp 0
\end{abmatrix}
\begin{abmatrix}{rrrr}
-8 \amp 2 \amp -9 \amp 7 \\
7 \amp 1 \amp 3 \amp -5 \\
2 \amp 6 \amp 6 \amp -4 \\
-8 \amp 1 \amp 9 \amp 3
\end{abmatrix}\\
\amp =
\begin{abmatrix}{rrrr}
-57 \amp 78 \amp -12 \amp 18 \\
13 \amp -22 \amp 3 \amp -3 \\
2 \amp 6 \amp 6 \amp -4 \\
7 \amp 1 \amp 3 \amp -5
\end{abmatrix}\text{,}
\end{align*}
\begin{align*}
B C A \amp = (B C) A \\
\amp =
\begin{abmatrix}{rrrr}
-57 \amp 78 \amp -12 \amp 18 \\
13 \amp -22 \amp 3 \amp -3 \\
2 \amp 6 \amp 6 \amp -4 \\
7 \amp 1 \amp 3 \amp -5
\end{abmatrix}
\begin{abmatrix}{rrrr}
1 \amp 3 \amp -2 \amp 2 \\
0 \amp 0 \amp 0 \amp 1 \\
0 \amp 0 \amp 1 \amp 0 \\
1 \amp 4 \amp 2 \amp -1
\end{abmatrix}\\
\amp =
\begin{abmatrix}{rrrr}
-39 \amp -99 \amp 138 \amp -54 \\
10 \amp 27 \amp -29 \amp 7 \\
- 2 \amp -10 \amp - 6 \amp 14 \\
2 \amp 1 \amp -21 \amp 20
\end{abmatrix}\text{.}
\end{align*}
Taking the
\(I\) in the equality to represent the
\(4 \times 4\) identity matrix to match the dimensions of the other matrices, we also have
\begin{equation*}
5 I =
5 \bidentmatfour =
\begin{bmatrix}
5 \amp 0 \amp 0 \amp 0 \\
0 \amp 5 \amp 0 \amp 0 \\
0 \amp 0 \amp 5 \amp 0 \\
0 \amp 0 \amp 0 \amp 5 \\
\end{bmatrix}\text{.}
\end{equation*}
Finally,
\begin{align*}
X \amp = B C A + 5 I \\
\amp =
\begin{abmatrix}{rrrr}
-39 \amp -99 \amp 138 \amp -54 \\
10 \amp 27 \amp -29 \amp 7 \\
- 2 \amp -10 \amp - 6 \amp 14 \\
2 \amp 1 \amp -21 \amp 20
\end{abmatrix}
+
\begin{bmatrix}
5 \amp 0 \amp 0 \amp 0 \\
0 \amp 5 \amp 0 \amp 0 \\
0 \amp 0 \amp 5 \amp 0 \\
0 \amp 0 \amp 0 \amp 5 \\
\end{bmatrix}\\
\amp =
\begin{abmatrix}{rrrr}
-34 \amp -99 \amp 138 \amp -54 \\
10 \amp 32 \amp -29 \amp 7 \\
- 2 \amp -10 \amp - 1 \amp 14 \\
2 \amp 1 \amp -21 \amp 25
\end{abmatrix}\text{.}
\end{align*}