Let \(A\) represent the matrix. Choose the second column for a cofactor expansion since it will involve the fewest minor determinant calculations:
\begin{align*}
\det A \amp =
\begin{avmatrix}{rrrr}
-2 \amp {\color{red}\mathbf{ 0}}^- \amp 3 \amp 7 \\
-3 \amp {\color{red}\mathbf{-1}}^+ \amp 2 \amp -2 \\
3 \amp {\color{red}\mathbf{ 1}}^- \amp -2 \amp 3 \\
1 \amp {\color{red}\mathbf{ 0}}^+ \amp -1 \amp -3
\end{avmatrix}\\
\amp =
(-1) \cdot
\begin{avmatrix}{rrr}
-2 \amp 3 \amp 7 \\
3 \amp -2 \amp 3 \\
1 \amp -1 \amp -3
\end{avmatrix}
- 1 \cdot
\begin{avmatrix}{rrr}
-2 \amp 3 \amp 7 \\
-3 \amp 2 \amp -2 \\
1 \amp -1 \amp -3
\end{avmatrix}
\end{align*}
Let’s compute these two
\(3 \times 3\) minor determinants separately; call the first matrix
\(A_1\) and the second
\(A_2\text{.}\) Neither has any zero entries, but the third row in each contains a couple of ones, so we’ll choose to expand along that row in each. In both expansions, we will use the general
\(a d - b c\) formula for the resulting
\(2 \times 2\) minor determinants (see
Subsection 8.3.3).
\begin{align*}
\det A_1 \amp =
\begin{avmatrix}{lll}
-2 \amp \phantom{-}3 \amp \phantom{-}7 \\
\phantom{-}3 \amp -2 \amp \phantom{-}3 \\
{\color{red}\mathbf{1}}^+ \amp {\color{red}\mathbf{-1}}^- \amp {\color{red}\mathbf{-3}}^+
\end{avmatrix}\\
\amp =
1 \cdot
\begin{avmatrix}{rr}
3 \amp 7 \\
-2 \amp 3 \\
\end{avmatrix}
- (-1) \cdot
\begin{avmatrix}{rr}
-2 \amp 7 \\
3 \amp 3 \\
\end{avmatrix}
+ (-3) \cdot
\begin{avmatrix}{rr}
-2 \amp 3 \\
3 \amp -2
\end{avmatrix}\\
\amp =
\bbrac{3 \cdot 3 - 7 \cdot (-2)}
+ \bbrac{(-2) \cdot 3 - 7 \cdot 3}
- 3 \bbrac{(-2) \cdot (-2) - 3 \cdot 3}\\
\amp = 11
\end{align*}
\begin{align*}
\det A_2 \amp =
\begin{avmatrix}{lll}
-2 \amp \phantom{-}3 \amp \phantom{-}7 \\
-3 \amp \phantom{-}2 \amp -2 \\
\phantom{-}{\color{red}\mathbf{1}}^+ \amp {\color{red}\mathbf{-1}}^- \amp {\color{red}\mathbf{-3}}^+
\end{avmatrix}\\
\amp =
1 \cdot
\begin{avmatrix}{rr}
3 \amp 7 \\
2 \amp -2 \\
\end{avmatrix}
- (-1) \cdot
\begin{avmatrix}{rr}
-2 \amp 7 \\
-3 \amp -2 \\
\end{avmatrix}
+ (-3) \cdot
\begin{vmatrix}
-2 \amp 3 \\
-3 \amp 2
\end{vmatrix}\\
\amp =
\bbrac{3 \cdot (-2) - 7 \cdot 2}
+ \bbrac{(-2) \cdot (-2) - 7 \cdot (-3)}
- 3 \bbrac{(-2) \cdot 2 - 3 \cdot (-3)}\\
\amp = -10
\end{align*}
Substituting these results into our original cofactor expansion for \(\det A\text{,}\) we have
\begin{align*}
\det A \amp = (-1) \cdot \det A_1 - 1 \cdot \det A_2 \\
\amp = (-1) \cdot 11 - 1 \cdot (-10) \\
\amp = -1 \text{.}
\end{align*}