This system is represented in matrix form \(A \uvec{x} = \uvec{b} \) where
\begin{align*}
A \amp =
\begin{abmatrix}{rrrr}
1 \amp 3 \amp 5 \amp -4 \\
0 \amp 1 \amp 4 \amp -2 \\
0 \amp 0 \amp -1 \amp 3 \\
-1 \amp -3 \amp -4 \amp 2
\end{abmatrix}
\text{,}
\amp
\uvec{x} \amp = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{,} \amp
\uvec{b} \amp = \begin{abmatrix}{r} 0 \\ -4 \\ 1 \\ -3 \end{abmatrix} \text{.}
\end{align*}
The coefficient matrix is identical to the matrix of
Exercise 26 and has inverse
\begin{equation*}
\begin{abmatrix}{rrrr}
20 \amp -3 \amp 12 \amp 19 \\
-10 \amp 1 \amp -6 \amp -10 \\
3 \amp 0 \amp 2 \amp 3 \\
1 \amp 0 \amp 1 \amp 1
\end{abmatrix}\text{.}
\end{equation*}
The system therefore has unique solution
\begin{equation*}
\uvec{x} =
\inv{A} \uvec{b} =
\begin{abmatrix}{rrrr}
20 \amp -3 \amp 12 \amp 19 \\
-10 \amp 1 \amp -6 \amp -10 \\
3 \amp 0 \amp 2 \amp 3 \\
1 \amp 0 \amp 1 \amp 1
\end{abmatrix}
\begin{abmatrix}{r} 0 \\ -4 \\ 1 \\ -3 \end{abmatrix}
= \begin{abmatrix}{r} -33 \\ 20 \\ -7 \\ -2 \end{abmatrix}\text{.}
\end{equation*}
In this unique solution, \(x_1 = -33\text{,}\) \(x_2 = 20\text{,}\) \(x_3 = -7\text{,}\) and \(x_4 = -2\text{.}\)