This matrix can be reduced to almost upper triangular using the sequence of operations
\(\displaystyle R_1 - 2 R_2 \)
\(\displaystyle R_2 - 2 R_1; R_3 - 5 R_1; R_4 - 3 R_1 \)
\(\displaystyle R_2 + 4 R_5 \)
\(\displaystyle - R_2 \)
\(\displaystyle R_3 - 21 R_2; R_4 - 8 R_2; R_5 + 3 R_2 \)
\(\displaystyle R_4 + 3 R_5 \)
\(\displaystyle R_5 + 6 R_4 \)
\(\displaystyle - R_5 \)
\(\displaystyle R_3 \leftrightarrow R_5 \)
\(R_4 - 3 R_3; R_5 - 139 R_3 \text{,}\)
resulting in
\begin{equation*}
\begin{abmatrix}{rrrrr}
1 \amp -4 \amp -3 \amp -9 \amp -6 \\
0 \amp 1 \amp -6 \amp -38 \amp 15 \\
0 \amp 0 \amp 1 \amp 110 \amp -3 \\
0 \amp 0 \amp 0 \amp -330 \amp 17 \\
0 \amp 0 \amp 0 \amp -14443 \amp 759
\end{abmatrix}\text{.}
\end{equation*}
By repeatedly computing cofactor expansions along the first column, we can compute
\begin{align*}
\amp
\det
\begin{abmatrix}{rrrrr}
1 \amp -4 \amp -3 \amp -9 \amp -6 \\
0 \amp 1 \amp -6 \amp -38 \amp 15 \\
0 \amp 0 \amp 1 \amp 110 \amp -3 \\
0 \amp 0 \amp 0 \amp -330 \amp 17 \\
0 \amp 0 \amp 0 \amp -14443 \amp 759
\end{abmatrix}\\
\amp =
\begin{avmatrix}{rrrr}
1 \amp -6 \amp -38 \amp 15 \\
0 \amp 1 \amp 110 \amp -3 \\
0 \amp 0 \amp -330 \amp 17 \\
0 \amp 0 \amp -14443 \amp 759
\end{avmatrix}\\
\amp =
\begin{avmatrix}{rrr}
1 \amp 110 \amp -3 \\
0 \amp -330 \amp 17 \\
0 \amp -14443 \amp 759
\end{avmatrix}\\
\amp =
\begin{avmatrix}{rr}
-330 \amp 17 \\
-14443 \amp 759
\end{avmatrix}\\
\amp = -300 \cdot 759 - 17 \cdot -14443\\
\amp = -4939\text{.}
\end{align*}
From the sequence of operations, if the original matrix has determinant \(d\) then our final almost upper triangular matrix has determinant \(-d\text{.}\) From \(-d = -4939\) we conclude that the original matrix has determinant \(d = 4939\text{.}\)
Note: If you chose a different sequence of row operations, your final reduced matrix could be different, with a different determinant, and the relationship between that determinant and the determinant of the original matrix could be different.