next up previous contents index
Next: Zitterbewegung Up: Klein-Gordon Equation Previous: Charge Conjugation

Klein-Gordon Equation in Schrödinger Form

For some calculations it is useful to write the Klein-Gordon equation in the two-component form


$\displaystyle \chi_1$ $\textstyle =$ $\displaystyle \frac{1}{2} \left[ \phi + \frac{i}{m} \left(\partial^0 +
ieA^0\right)\phi\right] ,$ (4.84)
$\displaystyle \chi_2$ $\textstyle =$ $\displaystyle \frac{1}{2} \left[ \phi - \frac{i}{m} \left(\partial^0 +
ieA^0\right)\phi\right] .$ (4.85)

We see that $\phi = \chi_1 + \chi_2$ and $\chi_1 - \chi_2 =
\frac{i}{m}\left(\partial^0+ieA^0\right)\phi$.

The charge density for these state is (setting $\hbar = c = 1$)


$\displaystyle \rho$ $\textstyle =$ $\displaystyle \frac{ie}{2m} \left[ \phi^*(\partial^0 + ieA^0)\phi -
\phi(\partial^0 - ieA^0)\phi^* \right] ,$  
  $\textstyle =$ $\displaystyle \frac{ie}{2m} \frac{m}{i} [(\chi_1+\chi_2)^*(\chi_1-\chi_2) +
(\chi_1+\chi_2)(\chi_1-\chi_2)^*] ,$  
  $\textstyle =$ $\displaystyle \frac{e}{2} \left( \chi_1^*\chi_1 - \chi_2^*\chi_2 +
\chi_1^*\chi_1 - \chi_2^*\chi_2 \right) ,$  
  $\textstyle =$ $\displaystyle e \left( \vert\chi_1\vert^2 - \vert\chi_2\vert^2 \right) ,$ (4.86)

which is rather simple and somewhat similar to the nonrelativistic case.

$\chi_1, \chi_2$ obey the coupled equation


$\displaystyle (i\partial^0 -eA^0)\chi_1$ $\textstyle =$ $\displaystyle \frac{1}{2} \left(i\partial^0 -
eA^0\right)\phi + \frac{i}{2m} \left(i\partial^0 -
eA^0\right)\left(\partial^0 + ieA^0\right)\phi ,$  
  $\textstyle =$ $\displaystyle \frac{m}{2} (\chi_1-\chi_2) + \frac{1}{2m}
\left(i\partial^0-eA^0\right)^2\phi ,$  
  $\textstyle =$ $\displaystyle \frac{m}{2} (\chi_1-\chi_2) + \frac{1}{2m} \left[\left(-i\vec{\nabla} -
e\vec{A}\right)^2 + m^2\right](\chi_1+\chi_2) ,$  
  $\textstyle =$ $\displaystyle \frac{1}{2m} \left(-i\vec{\nabla} -
e\vec{A}\right)^2(\chi_1+\chi_2) + m\chi_1 ,$ (4.87)

and


$\displaystyle (i\partial^0 -eA^0)\chi_2$ $\textstyle =$ $\displaystyle \frac{m}{2} \left(\chi_1 - \chi_2\right) -
\frac{1}{2m} \left[\left(-i\vec{\nabla} -e\vec{A}\right)^2 +m^2\right]
\left(\chi_1 + \chi_2\right) ,$  
  $\textstyle =$ $\displaystyle -\frac{1}{2m} \left(-i\vec{\nabla} -e\vec{A}\right)^2
\left(\chi_1+\chi_2\right) - m\chi_2 .$ (4.88)

If we define the 2-component spinor


\begin{displaymath}
\chi = \left(
\begin{array}{c}
\chi_1 \\
\chi_2
\end{array}\right)
\end{displaymath} (4.89)

we can combine equations 4.87 and 4.88 to be


\begin{displaymath}
\left( i\partial^0 - eA^0 \right) \left( \begin{array}{c} \c...
...\left( \begin{array}{r} \chi_1
\\ -\chi_2 \end{array}\right) ,
\end{displaymath} (4.90)


$\displaystyle \left( i\partial^0 - eA^0 \right) \left( \begin{array}{cc} 1 & 0 ...
...{array} \right) \left( \begin{array}{c} \chi_1 , \\
\chi_2 \end{array} \right)$ $\textstyle =$ $\displaystyle \frac{1}{2m} \left( -i\vec{\nabla} -
e\vec{A} \right)^2 \left( \b...
...nd{array} \right) \left( \begin{array}{c} \chi_1 \\  \chi_2
\end{array} \right)$  
  $\textstyle +$ $\displaystyle m \left( \begin{array}{cc} 1 & 0 \\  0 & -1
\end{array} \right)
\left( \begin{array}{c} \chi_1 \\  \chi_2 \end{array}\right) .$ (4.91)

Using the Pauli matrices, $\vec{\tau}$,


\begin{displaymath}
\tau_3 + i\tau_2 = \left( \begin{array}{rr} 1 & 1 \\ -1 & -1
\end{array} \right)
\end{displaymath} (4.92)

and we can write


\begin{displaymath}
(i\partial^0 - eA^0)\chi = \left[ \frac{1}{2m} (-i\vec{\nabla} -
e\vec{A})^2(\tau_3 + i\tau_2) + m\tau_3 \right] \chi .
\end{displaymath} (4.93)

This is a first order Schrödinger equation (cf. $\partial^0\chi = H\chi$). The quantity in square brackets is $H - eA^0$.

Also in this notation, the charge density can be written as


\begin{displaymath}
\rho = e (\vert\chi_1\vert^2 - \vert\chi_2\vert^2) = e \chi^\dagger \tau_3 \chi .
\end{displaymath} (4.94)

The normalization condition becomes


\begin{displaymath}
\langle\chi\vert\chi\rangle = \int d^3x\chi^\dagger(x)\tau_3\chi(x) = \pm 1 .
\end{displaymath} (4.95)

It will be shown later that the sign is determined by whether we start with particles ($+$) or antiparticles ($-$).

The Klein-Gordon Hamiltonian is


\begin{displaymath}
H = \frac{1}{2m} (-i\vec{\nabla} - e\vec{A})^2 (\tau_3 + i\tau_2) +
m\tau_3 + eA^0 .
\end{displaymath} (4.96)

The Hamiltonian appears to be non-hermitian, since


\begin{displaymath}
(\tau_3 +i\tau_2)^\dagger = \tau_3 -i\tau_2 \ne \tau_3 +i\tau_2 .
\end{displaymath} (4.97)

However


\begin{displaymath}
\langle\chi^\prime\vert H\vert\chi\rangle = \int d^3x {\chi^\prime}^\dagger
(x)\tau_3 H\chi(x)
\end{displaymath} (4.98)

and


$\displaystyle \langle\chi^\prime\vert H\vert\chi\rangle^*$ $\textstyle =$ $\displaystyle \left( \int d^3x
{\chi^\prime}^\dagger(x) \tau_3 H \chi(x) \right)^\dagger ,$  
  $\textstyle =$ $\displaystyle \int d^3x \chi^\dagger(x) H^\dagger \tau_3 \chi^\prime(x) ,$  
  $\textstyle =$ $\displaystyle \int d^3x \chi^\dagger(x) \tau_3 (\tau_3 H^\dagger \tau_3)
\chi^\prime(x) ,$  
  $\textstyle =$ $\displaystyle \langle \chi\vert\tau_3H^\dagger\tau_3\vert\chi^\prime\rangle .$ (4.99)

We notice that


\begin{displaymath}
\tau_3(\tau_3 + i\tau_2)^\dagger\tau_3 = \tau_3(\tau_3 -
i\tau_2)\tau_3 = \tau_3 -i\tau_3\tau_2\tau_3
\end{displaymath} (4.100)

and


\begin{displaymath}
\tau_3\tau_2\tau_3 =
\left( \begin{array}{rr} 1 & 0 \\ 0 & ...
...gin{array}{rr} 0 & i \\ -i & 0 \end{array} \right)
= -\tau_2
\end{displaymath} (4.101)

gives


\begin{displaymath}
\tau_3(\tau_3 + i\tau_2)^\dagger\tau_3 = \tau_3 + i\tau_2 .
\end{displaymath} (4.102)

Therefore


\begin{displaymath}
\tau_3 H^\dagger \tau_3 = H .
\end{displaymath} (4.103)

Because of the normalization condition, the Hamiltonian is effectively hermitian.

Consider the free particle solutions


\begin{displaymath}
\chi_1 = \frac{1}{2} \left[ \phi + \frac{i}{m}\partial^0\phi...
... \frac{1}{2} \left[ \phi - \frac{i}{m}\partial^0\phi \right] .
\end{displaymath} (4.104)

A positive-energy plane-wave solution normalized to unit density (equation 4.41) is


\begin{displaymath}
\phi(x) = \sqrt{\frac{m}{E}} e^{-i(Et - \vec{p}\cdot\vec{x})} =
\sqrt{\frac{m}{E}} e^{-ip\cdot x} .
\end{displaymath} (4.105)

Since $\partial^0\phi = -iE\phi$,


\begin{displaymath}
\chi_1 = \frac{1}{2}\left(1 + \frac{E}{m}\right)\phi \quad
\...
...} \quad \chi_2 = \frac{1}{2}\left(1 -
\frac{E}{m}\right)\phi .
\end{displaymath} (4.106)

We can write


\begin{displaymath}
\chi \equiv \left( \begin{array}{c} \chi_1 \\ \chi_2
\end{ar...
...ht) e^{-ip\cdot x} \equiv
\chi^{(+)}(\vec{p}) e^{-ip\cdot x} ,
\end{displaymath} (4.107)

where


\begin{displaymath}
\chi^{(+)}(\vec{p}) = \frac{1}{2\sqrt{mE}} \left( \begin{array}{c} m+E
\\ m-E \end{array} \right) .
\end{displaymath} (4.108)

A corresponding negative-energy plane-wave solution is


\begin{displaymath}
\phi(x) = \sqrt{\frac{m}{E}} e^{-i(-Et - \vec{p}\cdot\vec{x})}
\end{displaymath} (4.109)

giving


\begin{displaymath}
\chi^{(-)}(\vec{p}) = \frac{1}{2\sqrt{mE}} \left( \begin{array}{c} m-E
\\ m+E \end{array} \right) .
\end{displaymath} (4.110)

Orthogonality shows


$\displaystyle \langle \chi^{(+)}(\vec{p}) \vert \chi^{(+)}(\vec{p}) \rangle$ $\textstyle \equiv$ $\displaystyle {\chi^{(+)}}^\dagger(\vec{p}) \tau_3 \chi^{(+)}(\vec{p}) ,$  
  $\textstyle =$ $\displaystyle \frac{1}{4mE} \left( \begin{array}{r} m+E \\  m-E \end{array}\right)^\dagger \left( \begin{array}{r} m+E \\  -m+E \end{array}\right) ,$  
  $\textstyle =$ $\displaystyle \frac{1}{4mE} [(m+E)(m+E) + (m-E)(-m+E)] ,$  
  $\textstyle =$ $\displaystyle \frac{1}{4mE} (m^2 + 2mE + E^2 - m^2 + 2mE - E^2) ,$  
  $\textstyle =$ $\displaystyle 1 ,$ (4.111)

and it can also be shown that


\begin{displaymath}
\langle \chi^{(-)}(\vec{p}) \vert \chi^{(-)}(\vec{p}) \rangle = -1 ,
\end{displaymath} (4.112)


\begin{displaymath}
\langle \chi^{(+)}(\vec{p}) \vert \chi^{(-)}(\vec{p}) \rangle = 0 ,
\end{displaymath} (4.113)


\begin{displaymath}
\langle \chi^{(-)}(\vec{p}) \vert \chi^{(+)}(\vec{p}) \rangle = 0 .
\end{displaymath} (4.114)

In the nonrelativistic limit we have


\begin{displaymath}
E = (p^2 + m^2)^{1/2} = m\left(1 + \frac{p^2}{m^2}\right)^{1...
...(1 + \frac{1}{2}\frac{p^2}{m^2} \right) = m +
\frac{p^2}{2m} .
\end{displaymath} (4.115)

The components of equation 4.108 are


$\displaystyle \frac{m+E}{2\sqrt{mE}}$ $\textstyle \approx$ $\displaystyle \frac{m+m+p^2/2m}{2m^{1/2}\left(m+\frac{p^2}{2m}\right)^{1/2}} \a...
...rac{1}{2}\frac{p^2}{2m^2}\right)} \approx
\frac{4m^2+p^2}{4m^2+p^2} \approx 1 ,$ (4.116)
$\displaystyle \frac{m-E}{2\sqrt{mE}}$ $\textstyle \approx$ $\displaystyle \frac{m-m-p^2/2m}{2m^{1/2}\left(m+\frac{p^2}{2m}\right)^{1/2}} \a...
...rac{p^2}{2m^2}\right)} \approx
\frac{-p^2}{4m^2+p^2} \approx -\frac{p^2}{4m^2}.$ (4.117)

Equation 4.108 in the nonrelativistic limit is


\begin{displaymath}
\chi^{(+)}(\vec{p}) \approx
\left(\begin{array}{c} 1 \\ -p^...
...ht) \approx
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) ,
\end{displaymath} (4.118)

which holds to second order in the velocity. Similarly


\begin{displaymath}
\chi^{(-)}(\vec{p}) \approx \left( \begin{array}{c} 0 \\ 1 \end{array}\right) .
\end{displaymath} (4.119)

By completeness, any wavepacket can be expanded in terms of a linear combination of positive- and negative-energy solutions.


$\displaystyle \phi(\vec{x},t)$ $\textstyle =$ $\displaystyle \int \frac{d^3p}{(2\pi)^3}
e^{i\vec{p}\cdot\vec{x}} \left[ a^{(+)...
...p}}(t)\chi^{(+)}(\vec{p}) +
a^{(-)}_{-\vec{p}}(t)\chi^{(-)}(-\vec{p}) \right] ,$ (4.120)
  $\textstyle =$ $\displaystyle \int \frac{d^3p}{(2\pi)^3}
\left[ a^{(+)}_{\vec{p}}(t)\chi^{(+)}(...
...} +
a^{(-)}_{\vec{p}}(t)\chi^{(-)}(\vec{p}) e^{-i\vec{p}\cdot\vec{x}}
\right] ,$ (4.121)

where $\chi(\vec{p})$ only depends on the magnitude of $\vec{p}$, and $a_{\vec{p}}(t)$ is a function of time and the magnitude of $\vec{p}$.

If the wave function is normalized to unity we have


$\displaystyle 1$ $\textstyle \equiv$ $\displaystyle \langle\phi\vert\phi\rangle = \int d^3x
\phi^\dagger(\vec{x},t) \tau_3 \phi(\vec{x},t) ,$  
  $\textstyle =$ $\displaystyle \int d^3x \frac{d^3p^\prime}{(2\pi)^3} \frac{d^3p}{(2\pi)^3}
\lef...
...{(-)}}^\dagger(\vec{p}^{\:\prime)}
e^{i\vec{p}^{\:\prime}\cdot\vec{x}}]
\right.$  
    $\displaystyle \tau_3
\left. [a^{(+)}_{\vec{p}}(t)\chi^{(+)}(\vec{p})e^{i\vec{p}...
...} +
a^{(-)}_{\vec{p}}(t)\chi^{(-)}(\vec{p})e^{-i\vec{p}\cdot\vec{x}}]
\right] ,$  
  $\textstyle =$ $\displaystyle \int d^3x \frac{d^3p^\prime}{(2\pi)^3} \frac{d^3p}{(2\pi)^3}
[{a^...
...\prime})\tau_3\chi^{(+)}(\vec{p})
e^{i\vec{x}\cdot(\vec{p}-\vec{p}^{\:\prime})}$  
    $\displaystyle +
{a^{(-)}_{\vec{p}}}^*(t)a^{(-)}_{\vec{p}}(t)
{\chi^{(-)}}^\dagg...
...prime})\tau_3\chi^{(-)}(\vec{p})
e^{-i\vec{x}\cdot(\vec{p}-\vec{p}^{\:\prime})}$  
    $\displaystyle +
{a^{(+)}_{\vec{p}}}^*(t)a^{(-)}_{\vec{p}}(t)
{\chi^{(+)}}^\dagg...
...prime})\tau_3\chi^{(-)}(\vec{p})
e^{-i\vec{x}\cdot(\vec{p}+\vec{p}^{\:\prime})}$  
    $\displaystyle +
{a^{(-)}_{\vec{p}}}^*(t)a^{(+)}_{\vec{p}}(t)
{\chi^{(-)}}^\dagg...
...me})\tau_3\chi^{(+)}(\vec{p})
e^{i\vec{x}\cdot(\vec{p}+\vec{p}^{\:\prime})} ] ,$  
  $\textstyle =$ $\displaystyle \int \frac{d^3p}{(2\pi)^3} \left[ \vert a^{(+)}_{\vec{p}}(t)\vert^2 -
\vert a^{(-)}_{\vec{p}}(t)\vert^2 \right] .$ (4.122)


next up previous contents index
Next: Zitterbewegung Up: Klein-Gordon Equation Previous: Charge Conjugation
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18