next up previous contents index
Next: Klein-Gordon Equation in Schrödinger Up: Interaction with the Electromagnetic Previous: Electromagnetic Coupling

Charge Conjugation

Consider a positive-energy solution with charge $e$. The equivalent Klein-Gordon equation satisfied by the positive-energy solution is


\begin{displaymath}
i\hbar\partial_t\phi_e^{(+)} = \sqrt{m^2c^4 + (-i\hbar c\vec{\nabla} -
e\vec{A})^2}\ \phi_e^{(+)} + eA_0\phi_e^{(+)} .
\end{displaymath} (4.77)

The negative energy solution satisfies


\begin{displaymath}
i\hbar\partial_t\phi_e^{(-)} = -\sqrt{m^2c^4 + (-i\hbar c\vec{\nabla} -
e\vec{A})^2}\ \phi_e^{(-)} + eA_0\phi_e^{(-)} .
\end{displaymath} (4.78)

Taking the complex conjugate of the negative energy equation gives


$\displaystyle -i\hbar\partial_t{\phi_e^{(-)}}^*$ $\textstyle =$ $\displaystyle -\sqrt{m^2c^4 + ( i\hbar
c\vec{\nabla} - e\vec{A})^2}\ {\phi_e^{(-)}}^* +
eA_0{\phi_e^{(-)}}^* ,$  
$\displaystyle i\hbar\partial_t{\phi_e^{(-)}}^*$ $\textstyle =$ $\displaystyle \sqrt{m^2c^4 + (-i\hbar
c\vec{\nabla} + e\vec{A})^2}\ {\phi_e^{(-)}}^* -
eA_0{\phi_e^{(-)}}^*.$ (4.79)

Comparing equation 4.77 with equation 4.79 shows


\begin{displaymath}
\fbox{$\displaystyle {\phi_{-e}^{(-)}}^* \propto \phi_e^{(+)}$}\ .
\end{displaymath} (4.80)

Thus ${\phi_{-e}^{(-)}}^*$ is the charge conjugate solution and represents the charge conjugate state of $\phi_e^{(+)}$. Similarly, ${\phi_e^{(+)}}^*$ is the charge conjugate state of $\phi_{-e}^{(-)}$. If we (arbitrarily) call the particle described by $\phi_e^{(+)}$ ``the particle'', then we call the particle described by ${\phi_{-e}^{(-)}}^*$ the antiparticle. For example, if we call the $\pi^+$ meson the particle, then the $\pi^-$ meson is the antiparticle. The undesirable negative-energy solutions have now been interpreted as antiparticles.

Neutral particles fit into this picture too, in that the charge-conjugate state is the state itself. In other words, neutral particles are their own antiparticles. Let $\phi\equiv\phi_e^{(+)}$ and $\phi_C\equiv{\phi_{-e}^{(-)}}^*$ so that we can write


\begin{displaymath}
\phi_C = \alpha\phi,
\end{displaymath} (4.81)

where $\alpha$ is a proportionality constant which has to be real. $\alpha$ can be deduced since for neutral particles both $\phi$ and $\alpha\phi$ are real. Realizing that


\begin{displaymath}
(\phi_C)_C = \phi
\end{displaymath} (4.82)

it follows that


\begin{displaymath}
(\alpha\phi)_C = \alpha^2\phi = \phi
\end{displaymath} (4.83)

so that $\alpha^2 = 1$ and $\alpha = \pm 1$. Accordingly there exist two different kinds of neutral particles, namely

  1. neutral particles with positive charge parity, ie. $\alpha=+1$,


    \begin{displaymath}
\phi_C=\phi ,
\end{displaymath}

  2. neutral particles with negative charge parity, ie. $\alpha=-1$,


    \begin{displaymath}
\phi_C=-\phi .
\end{displaymath}

Neutral particles are thus eigenfunctions of the charge conjugation operator, while charged particles are not.


next up previous contents index
Next: Klein-Gordon Equation in Schrödinger Up: Interaction with the Electromagnetic Previous: Electromagnetic Coupling
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18