Section 4.9 Inverse trigonometric functions
Objectives
You should be able to:
- Determine the domain, the range and the graph of inverse trigonometric functions.
- Evaluate the value of inverse trigonometric functions at certain points.
- Calculate the derivative of inverse trigonometric functions using implicit differentiation.
- Simplify expressions involving trigonometric and inverse trigonometric functions.
Subsection 4.9.1 Instructional video
Subsection 4.9.2 Key concepts
Concept 4.9.1. Inverse trigonometric functions.
- Inverse sin function:y=sinxβx=sinβ1yfor xβ[βΟ/2,Ο/2],yβ[β1,1].
- Inverse cos function:y=cosxβx=cosβ1yfor xβ[0,Ο],yβ[β1,1].
- Inverse tan function:y=tanxβx=tanβ1yfor xβ(βΟ/2,Ο/2),yβR.
- Inverse cotan function:y=cotxβx=cotβ1yfor xβ(0,Ο),yβR.
- Inverse sec function:y=secxβx=secβ1yfor xβ[0,Ο/2)βͺ[Ο,3Ο/2),yβ(ββ,β1]βͺ[1,β).
- Inverse cosec function:y=cscxβx=cscβ1yfor xβ(0,Ο/2]βͺ(Ο,3Ο/2]yβ(ββ,β1]βͺ[1,β).
Note that inverse trig functions are also denoted by arcsin(x), arccos(x), etc., which is often preferred. And, very importantly, remark that
sinβ1(x)β 1sin(x) !
Concept 4.9.2. Derivatives of inverse trigonometric functions.
ddxsinβ1(x)=1β1βx2,ddxcosβ1(x)=β1β1βx2,ddxtanβ1(x)=11+x2,ddxcotβ1(x)=β11+x2,ddxsecβ1(x)=1xβx2β1,ddxcscβ1(x)=β1xβx2β1.
Further readings 4.9.3 Further readings
[1]