Skip to main content

Section 4.9 Inverse trigonometric functions

Having studied the inverse functions to exponential functions, we now introduce the inverse functions to trigonometric functions, known as β€œinverse trigonometric functions”. Their definition requires restricting the domain of trigonometric functions, to make them one-to-one (so that their inverse functions can be defined unambiguously). We also study their derivatives, using implicit differentiation.

Subsection 4.9.1 Instructional video

Subsection 4.9.2 Key concepts

Concept 4.9.1. Inverse trigonometric functions.
  • Inverse sin function:
    y=sinx⇔x=sinβˆ’1yfor  x∈[βˆ’Ο€/2,Ο€/2],y∈[βˆ’1,1].
  • Inverse cos function:
    y=cosx⇔x=cosβˆ’1yfor x∈[0,Ο€],y∈[βˆ’1,1].
  • Inverse tan function:
    y=tanx⇔x=tanβˆ’1yfor x∈(βˆ’Ο€/2,Ο€/2),y∈R.
  • Inverse cotan function:
    y=cotx⇔x=cotβˆ’1yfor x∈(0,Ο€),y∈R.
  • Inverse sec function:
    y=secx⇔x=secβˆ’1yfor x∈[0,Ο€/2)βˆͺ[Ο€,3Ο€/2),y∈(βˆ’βˆž,βˆ’1]βˆͺ[1,∞).
  • Inverse cosec function:
    y=cscx⇔x=cscβˆ’1yfor x∈(0,Ο€/2]βˆͺ(Ο€,3Ο€/2]y∈(βˆ’βˆž,βˆ’1]βˆͺ[1,∞).

Note that inverse trig functions are also denoted by arcsin(x), arccos(x), etc., which is often preferred. And, very importantly, remark that

sinβˆ’1(x)β‰ 1sin(x) !
Concept 4.9.2. Derivatives of inverse trigonometric functions.
ddxsinβˆ’1(x)=1√1βˆ’x2,ddxcosβˆ’1(x)=βˆ’1√1βˆ’x2,ddxtanβˆ’1(x)=11+x2,ddxcotβˆ’1(x)=βˆ’11+x2,ddxsecβˆ’1(x)=1x√x2βˆ’1,ddxcscβˆ’1(x)=βˆ’1x√x2βˆ’1.

Further readings 4.9.3 Further readings