Section 4.9 Inverse trigonometric functions
Having studied the inverse functions to exponential functions, we now introduce the inverse functions to trigonometric functions, known as “inverse trigonometric functions”. Their definition requires restricting the domain of trigonometric functions, to make them one-to-one (so that their inverse functions can be defined unambiguously). We also study their derivatives, using implicit differentiation.
Objectives
You should be able to:
- Determine the domain, the range and the graph of inverse trigonometric functions.
- Evaluate the value of inverse trigonometric functions at certain points.
- Calculate the derivative of inverse trigonometric functions using implicit differentiation.
- Simplify expressions involving trigonometric and inverse trigonometric functions.
Subsection 4.9.1 Instructional video
Subsection 4.9.2 Key concepts
Concept 4.9.1. Inverse trigonometric functions.
- Inverse sin function:\begin{align*} y = \sin x \qquad \Leftrightarrow \qquad x = \sin^{-1}y \qquad \text{for}~\ \amp x \in [-\pi/2,\pi/2],\\ \amp y \in [-1,1]. \end{align*}
- Inverse cos function:\begin{align*} y = \cos x \qquad \Leftrightarrow \qquad x = \cos^{-1}y \qquad \text{for}~ \amp x \in [0,\pi],\\ \amp y\in[-1,1]. \end{align*}
- Inverse tan function:\begin{align*} y = \tan x \qquad \Leftrightarrow \qquad x = \tan^{-1}y \qquad \text{for}~\amp x \in (-\pi/2,\pi/2),\\ \amp y \in \mathbb{R}. \end{align*}
- Inverse cotan function:\begin{align*} y = \cot x \qquad \Leftrightarrow \qquad x = \cot^{-1}y \qquad \text{for}~\amp x \in (0,\pi),\\ \amp y \in \mathbb{R}. \end{align*}
- Inverse sec function:\begin{align*} y = \sec x \qquad \Leftrightarrow \qquad x = \sec^{-1}y \qquad \text{for} ~ \amp x \in [0,\pi/2) \cup [\pi, 3\pi/2),\\ \amp y \in (-\infty, -1] \cup [1, \infty). \end{align*}
- Inverse cosec function:\begin{align*} y = \csc x \qquad \Leftrightarrow \qquad x = \csc^{-1}y \qquad \text{for}~\amp x \in (0,\pi/2] \cup (\pi, 3\pi/2]\\ \amp y \in (-\infty, -1] \cup [1, \infty). \end{align*}
Note that inverse trig functions are also denoted by \(\arcsin(x)\text{,}\) \(\arccos(x)\text{,}\) etc., which is often preferred. And, very importantly, remark that
\begin{equation*}
\sin^{-1}(x) \neq \frac{1}{\sin(x)}\ !
\end{equation*}
Concept 4.9.2. Derivatives of inverse trigonometric functions.
\begin{align*}
\frac{d}{dx} \sin^{-1}(x) =\amp \frac{1}{\sqrt{1-x^2}}, \amp\frac{d}{dx} \cos^{-1}(x) =\amp - \frac{1}{\sqrt{1-x^2}},\\
\frac{d}{dx} \tan^{-1}(x) =\amp \frac{1}{1+x^2}, \amp\frac{d}{dx} \cot^{-1}(x) =\amp - \frac{1}{1+x^2},\\
\frac{d}{dx} \sec^{-1}(x) =\amp \frac{1}{x \sqrt{x^2-1}}, \amp\frac{d}{dx} \csc^{-1}(x) =\amp - \frac{1}{x \sqrt{x^2-1}}.
\end{align*}
Further readings 4.9.3 Further readings
[1]