\begin{equation*}
q(t) = t^n\text{,}
\end{equation*}
we have
\begin{align*}
q(t + dt) \amp = (t + dt)^n \\
\amp = t^n + b_1 t^{n - 1} dt + b_2 t^{n - 2} dt^2 + \dotsb + b_{n - 1} t dt^{n - 1} + dt^n \text{,}
\end{align*}
where \(b_1,b_2,\dotsc,b_{n-1}\) are the so-called binomial coefficients for the expansion of a binomial expression of the form \((x+y)^n\text{.}\) Therefore,
\begin{align*}
q(t + dt) - q(t) \amp = (\bcancel{t^n} + b_1 t^{n - 1} dt + b_2 t^{n - 2} dt^2 + \dotsb + b_{n - 1} t dt^{n - 1} + dt^n) - \bcancel{t^n} \\
\amp = (b_1 t^{n - 1} + b_2 t^{n - 2} dt + \dotsb + b_{n - 1} t dt^{n - 2} + dt^{n - 1}) dt \text{,}
\end{align*}
and so
\begin{align*}
\dqdt \amp = \frac{ q(t + dt) - q(t) }{ dt } \\
\amp = \frac{ (b_1 t^{n - 1} + b_2 t^{n - 2} dt + \dotsb + b_{n - 1} t dt^{n - 2} + dt^{n - 1}) \bcancel{dt} }{ \bcancel{dt} } \\
\amp = b_1 t^{n - 1} + b_2 t^{n - 2} dt + \dotsb + b_{n - 1} t dt^{n - 2} + dt^{n - 1} \text{.}
\end{align*}
Treating \(dt \approx 0\) as negligible at this point gives us
\begin{align*}
\dqdt \amp = b_1 t^{n - 1} + \cancelto{0}{b_2 t^{n - 2} dt} + \dotsb + \cancelto{0}{b_{n - 1} t dt^{n - 2}} + \cancelto{0}{dt^{n - 1}} \\
\amp = b_1 t^{n - 1} \text{.}
\end{align*}
Finally, it turns out that the first binomial coefficient \(b_1\) for the expansion of a binomial expression of the form \((x+y)^n\) is \(b_1 = n\) (refer to the Binomial Theorem), so that
\begin{equation*}
\ddt{(t^n)} = n t^{n - 1} \text{,}
\end{equation*}
as claimed.