next up previous contents index
Next: Coulomb Scattering of Positrons Up: Trace Theorems Previous: Theorem 5

Theorem 6


\begin{displaymath}
\textrm{Tr}[\not{\;\!\!a}_1\not{\;\!\!a}_2\cdots\not{\;\!\!a...
...}[\not{\;\!\!a}_{2n} \cdots \not{\;\!\!a}_2\not{\;\!\!a}_1] .
\end{displaymath} (7.74)

Poof: From the charge conjugation discussion, recall that there exists a matrix $C$ such that $C\gamma_\mu C^{-1}=-\gamma_\mu^T$. Then


$\displaystyle \textrm{Tr}[\not{\;\!\!a}_1\not{\;\!\!a}_2\cdots\not{\;\!\!a}_{2n}]$ $\textstyle =$ $\displaystyle \textrm{Tr}[C\not{\;\!\!a}_1C^{-1}C\not{\;\!\!a}_2C^{-1}\cdots
C\not{\;\!\!a}_{2n}C^{-1}]$  
  $\textstyle =$ $\displaystyle (-1)^{2n}\textrm{Tr}[\not{\;\!\!a}_1^T\not{\;\!\!a}_2^T\cdots\not{\;\!\!a}_{2n}^T]$  
  $\textstyle =$ $\displaystyle \textrm{Tr}[\not{\;\!\!a}_{2n}\cdots\not{\;\!\!a}_2\not{\;\!\!a}_1]^T$  
  $\textstyle =$ $\displaystyle \textrm{Tr}[\not{\;\!\!a}_{2n}\cdots\not{\;\!\!a}_2\not{\;\!\!a}_1] .$ (7.75)

A general from which we shall often encounter is


$\displaystyle \vert\overline{u}(f)\Gamma u(i)\vert^2$ $\textstyle =$ $\displaystyle \vert u^\dagger(f) \gamma^0 \Gamma u(i)\vert^2 ,$  
  $\textstyle =$ $\displaystyle [u^\dagger(f) \gamma^0 \Gamma u(i)][u^\dagger(i)
\Gamma^\dagger (\gamma^0)^\dagger u(f)] ,$  
  $\textstyle =$ $\displaystyle [\overline(f) \Gamma u(i)][\overline{u}(i) \gamma^0
\Gamma^\dagger \gamma^0 u(f)] ,$  
  $\textstyle =$ $\displaystyle [\overline(f) \Gamma u(i)][\overline{u}(i) \overline{\Gamma}
u(f)] ,$ (7.76)

where $\overline{\Gamma} = \gamma^0\Gamma^\dagger\gamma^0$, and $\Gamma$ is some combination of Dirac matrices.

For


$\displaystyle \overline{\gamma^\mu}$ $\textstyle =$ $\displaystyle \gamma^0 (\gamma^\mu)^\dagger \gamma^0 =
\gamma^\mu$  
$\displaystyle \overline{i\gamma^5}$ $\textstyle =$ $\displaystyle \gamma^0 (i\gamma^5)^\dagger \gamma^0 =
i\gamma^5$  
$\displaystyle \overline{\gamma^\mu\gamma^5}$ $\textstyle =$ $\displaystyle \gamma^0 (\gamma^5)^\dagger
(\gamma^\mu)^\dagger \gamma^0 = \gamma^\mu\gamma^5$  
$\displaystyle \overline{\not{\;\!\!a}\not{b}\not{c}\cdots\not{p}}$ $\textstyle =$ $\displaystyle \gamma^0
\not{p}^\dagger \cdots \not{c}^\dagger \not{b}^\dagger \not{\;\!\!a}^\dagger
\gamma^0 = \not{p}\cdots\not{c}\not{b}\not{\;\!\!a}.$ (7.77)

We often encounter the form


    $\displaystyle \frac{1}{2} \sum_{r=1}^2 \sum_{s=1}^2 \vert\overline{u}_f^r(p_f) \Gamma
u_i^s(p_i)\vert^2$ (7.78)
$\displaystyle \noindent$ $\textstyle =$ $\displaystyle \frac{1}{2} \sum_{r=1}^2 \sum_{s=1}^2
\sum_{\alpha,\beta,\gamma,\...
...\overline{u}_i^s(p_i)_\delta
\overline{\Gamma}_{\delta\gamma} u_f^r(p_f)_\gamma$ (7.79)
  $\textstyle =$ $\displaystyle \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta}
\Gamma_{\beta\alpha...
...mma}_{\delta\gamma} \left(
\frac{\not{\;\!\!\!p}_f+m}{2m} \right)_{\gamma\beta}$  
  $\textstyle =$ $\displaystyle \frac{1}{8m^2} \textrm{Tr}[
\Gamma(\not{\;\!\!\!p}_i+m)\overline{\Gamma}(\not{\;\!\!\!p}_f+m)]$  

The other ``trick'' we will use is to introduce the unit 4-vector, $a$ with a 1 in the component 0 to put $\gamma^0$ into the slash notation. The other components are zero: $a = (1,0,0,0)$.


next up previous contents index
Next: Coulomb Scattering of Positrons Up: Trace Theorems Previous: Theorem 5
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18