next up previous contents index
Next: Theorem 6 Up: Trace Theorems Previous: Theorem 4

Theorem 5


$\displaystyle \gamma_\mu\gamma^\mu$ $\textstyle =$ $\displaystyle 4 ,$ (7.69)


$\displaystyle \gamma_\mu \not{a} \gamma^\mu$ $\textstyle =$ $\displaystyle a_\nu \gamma_\mu \gamma^\nu
\gamma^\mu$  
  $\textstyle =$ $\displaystyle -a_\nu \gamma_\mu \gamma^\mu \gamma^\nu + 2a_\nu \gamma^\mu
g^{\nu\mu}$  
  $\textstyle =$ $\displaystyle -4a_\nu \gamma^\nu + 2\not{a}$  
  $\textstyle =$ $\displaystyle -4\not{a} + 2\not{a}$  
  $\textstyle =$ $\displaystyle -2 \not{a} ,$ (7.70)


$\displaystyle \gamma_\mu \not{a} \not{b} \gamma^\mu$ $\textstyle =$ $\displaystyle \gamma_\mu \not{a} b_\nu
\gamma^\nu \gamma^\mu$  
  $\textstyle =$ $\displaystyle -\gamma_\mu \not{a} b_\nu \gamma^\mu \gamma^\nu + 2\gamma_\mu
\not{a} b_\nu g^{\nu\mu}$  
  $\textstyle =$ $\displaystyle 2\not{a}\not{b} + 2\not{b}\not{a}$  
  $\textstyle =$ $\displaystyle 2a_\mu b_\nu (\gamma^\mu\gamma^\nu+\gamma^\nu\gamma^\mu)$  
  $\textstyle =$ $\displaystyle 4 a_\mu b_\nu g^{\mu\nu}$  
  $\textstyle =$ $\displaystyle 4 a\cdot b ,$ (7.71)

This leads to


$\displaystyle \gamma_\mu \not{a} \not{b} \not{c} \gamma^\mu$ $\textstyle =$ $\displaystyle -2 \not{c} \not{b}
\not{a} ,$ (7.72)
$\displaystyle \gamma_\mu \not{a} \not{b} \not{c} \not{d} \gamma^\mu$ $\textstyle =$ $\displaystyle 2[ \not{d}
\not{a} \not{b} \not{c} + \not{c} \not{b} \not{a} \not{d} ] .$ (7.73)


next up previous contents index
Next: Theorem 6 Up: Trace Theorems Previous: Theorem 4
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18