next up previous contents index
Next: Free-Particle Solutions and Wave Up: Dirac Equation Previous: Time Reversal

Combined PCT Symmetry

Recall the parity transformation $\vec{x}\rightarrow \vec{x}^\prime =
-\vec{x}$,


$\displaystyle P\psi(\vec{x},t)$ $\textstyle =$ $\displaystyle \psi^\prime(\vec{x}^\prime,t) =
e^{i\phi}\gamma^0\psi(\vec{x},t) ,$  
$\displaystyle P\phi(\vec{x},t)$ $\textstyle =$ $\displaystyle \phi^\prime(\vec{x}^\prime,t) = \phi(\vec{x},t) ,$  
$\displaystyle P\vec{A}(\vec{x},t)$ $\textstyle =$ $\displaystyle \vec{A}^\prime(\vec{x}^\prime,t) =
-\vec{A}(\vec{x},t) .$ (5.262)

The parity transformation leaves the Dirac equation and all physical observables unchanged.

We now combine all three symmetries, $P$, $\mathcal{C}$ and $\mathcal{T}$


$\displaystyle P\psi(\vec{x},t)$ $\textstyle =$ $\displaystyle e^{i\phi}\gamma^0\psi(\vec{x},t) =
\psi^\prime(\vec{x}^\prime,t) ,$  
$\displaystyle \mathcal{T}\psi(\vec{x},t)$ $\textstyle =$ $\displaystyle T\psi^*(\vec{x},t) =
i\gamma^1\gamma^3\psi^*(\vec{x},t) = \psi^\prime(\vec{x},t^\prime) ,$  
$\displaystyle \mathcal{C}\psi(\vec{x},t)$ $\textstyle =$ $\displaystyle C\gamma^0\psi^*(\vec{x},t) =
C\overline{\psi}^T(\vec{x},t) =
i\gamma^2\gamma^0\overline{\psi}^T(\vec{x},t) .$ (5.263)

to obtain


$\displaystyle \psi_{P\mathcal{CT}}(x^\prime)$ $\textstyle \equiv$ $\displaystyle P\mathcal{C}\mathcal{T}\psi(x) = P
C\gamma^0 (\mathcal{T}\psi(x))^* = P C \gamma^0 T^* \psi(x)$  
  $\textstyle =$ $\displaystyle (e^{i\phi}\gamma^0) (i\gamma^2\gamma^0) \gamma^0
(i\gamma^1\gamma^3)^* \psi(x) = -i e^{i\phi}
i\gamma^0\gamma^2\gamma^1\gamma^3 \psi(x)$  
  $\textstyle =$ $\displaystyle ie^{i\phi} (i\gamma^0\gamma^1\gamma^2\gamma^3) \psi(x) = i e^{i\phi}
\gamma_5 \psi(x) ,$ (5.264)

with $x_\mu^\prime = -x_\mu$.

Since $\psi_{P\mathcal{CT}}(x^\prime)$ can represent a positron, we see that it is an electron moving backward in space-time and multiplied by $ie^{i\phi}\gamma_5$. Thus positrons are negative-energy electrons running backward in space-time. This is the basis of the Stückelberg-Feynman form of positron theory.

For a free-particle spin-momentum eigenstate $\psi(x)$ and negative energy, we see


$\displaystyle \psi_{P\mathcal{CT}}(x^\prime)$ $\textstyle =$ $\displaystyle ie^{i\phi}\gamma_5 \left( \frac{-\not{p} +
m}{2m} \right) \left( \frac{1 + \gamma_5\not{s}}{2} \right) \psi(x)$  
  $\textstyle =$ $\displaystyle \left( \frac{\not{p} + m}{2m} \right) \left( \frac{1 -
\gamma_5\not{s}}{2} \right) ie^{i\phi}\gamma_5 \psi(x)$  
  $\textstyle =$ $\displaystyle \left( \frac{\not{p} + m}{2m} \right) \left( \frac{1 -
\gamma_5\not{s}}{2} \right) \psi_{P\mathcal{CT}}(x^\prime).$ (5.265)

Therefore a positron wave function is a negative-energy electron moving backward in time, multiplied by $ie^{i\phi}\gamma_5$.

For an arbitrary solution in the presence of electromagnetic forces, the negative energy eigenvalue equation is


\begin{displaymath}[\vec{\alpha}\cdot(-i\vec{\nabla} - e\vec{A}) + \beta m + e\phi ]\psi
= -E\psi.
\end{displaymath} (5.266)

Carrying out the $P\mathcal{CT}$ transformation gives


\begin{displaymath}[\vec{\alpha}\cdot(-i\vec{\nabla}^\prime + e\vec{A}^\prime(x^...
...e) ]\psi_{P\mathcal{CT}}(x^\prime) =
+E\psi_{PCT}(x^\prime) .
\end{displaymath} (5.267)

Notice that since


$\displaystyle P\phi(\vec{x},t)$ $\textstyle =$ $\displaystyle \phi(\vec{x},t) ,$  
$\displaystyle P\vec{A}(\vec{x},t)$ $\textstyle =$ $\displaystyle -\vec{A}(\vec{x},t) ,$  
$\displaystyle \phi^\prime(t^\prime=-t)$ $\textstyle =$ $\displaystyle +\phi(t) ,$  
$\displaystyle \vec{A}^\prime(t^\prime=-t)$ $\textstyle =$ $\displaystyle -\vec{A}(t) .$ (5.268)

Therefore $A_\mu^\prime(x^\prime) = +A_\mu(x)$.


next up previous contents index
Next: Free-Particle Solutions and Wave Up: Dirac Equation Previous: Time Reversal
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18