next up previous contents index
Next: Combined PCT Symmetry Up: Dirac Equation Previous: Charge Conjugation

Time Reversal

Consider time-reversal invariance, $t\rightarrow t^\prime=-t$. This time we start with the Dirac equation in Hamiltonian form


\begin{displaymath}
i\frac{\partial\psi(\vec{x},t)}{\partial t} = H\psi =
[\vec{...
...-i\vec{\nabla} - e\vec{A}) + \beta m +
e\phi]\psi(\vec{x},t).
\end{displaymath} (5.253)

Define the transformation $\mathcal{T}$ such that $t^\prime = -t$ and $\psi^\prime(t^\prime) = \mathcal{T}\psi(t)$, we have


\begin{displaymath}
\frac{\partial}{\partial t}
(\mathcal{T}i\mathcal{T}^{-1})\p...
...ime) = -\mathcal{T} H
\mathcal{T}^{-1} \psi^\prime(t^\prime).
\end{displaymath} (5.254)

Since $\vec{A}$ is generated by currents which reverse sign when the sense of time is reversed,


$\displaystyle \vec{A}^\prime(t^\prime)$ $\textstyle =$ $\displaystyle -\vec{A}(t) ,$ (5.255)
$\displaystyle \phi^\prime(t^\prime)$ $\textstyle =$ $\displaystyle +\phi(t) .$ (5.256)

Also $\vec{\nabla}^\prime = +\vec{\nabla}$, since $\vec{x}^\prime =
+\vec{x}$. The transformation must cause $i\rightarrow -i$ to get the correct form, therefore $\mathcal{T}$ can be defined as:

  1. take complex conjugate,
  2. multiply by $4\times 4$ constant matrix $T$.


\begin{displaymath}
\psi^\prime(t^\prime) = T\psi^*(t).
\end{displaymath} (5.257)

Therefore


\begin{displaymath}
i\frac{\partial\psi^\prime(t^\prime)}{\partial t^\prime} =
[...
...^*T^{-1})m
+ e\phi^\prime(t^\prime) ] \psi^\prime(t^\prime) .
\end{displaymath} (5.258)

This implies $T$ must commute with $\alpha_2$ and $\beta$ and anticommute with $\alpha_1$ and $\alpha_3$. Therefore we can try


\begin{displaymath}
\fbox{$\displaystyle
T = -i\alpha_1\alpha_3 = -i\alpha_1\gam...
... =
i\gamma^0\alpha_1\gamma^0\alpha_3 = i\gamma^1\gamma^3
$}\ .
\end{displaymath} (5.259)

The phase factor is arbitrary.

We apply $\mathcal{T}$ to a plane-wave solution for a free particle of positive energy. Since


\begin{displaymath}
\mathcal{T}\not{\;\!\!\!p}= T\not{\;\!\!\!p}^* = i\gamma^1\g...
...amma^3p_\mu &
\textrm{for}& \mu = 1,2,3
\end{array} \right. ,
\end{displaymath} (5.260)

and


$\displaystyle \mathcal{T} \left( \frac{\not{p} + m}{2m} \right) \left( \frac{1 +
\gamma_5\not{s}}{2} \right) \psi(\vec{x},t)$ $\textstyle =$ $\displaystyle T \left( \frac{\not{p}^*
+ m}{2m} \right) T^{-1}T \left( \frac{1 + \gamma_5\not{s}^*}{2}
\right) T^{-1} \psi^\prime(\vec{x},t^\prime)$  
  $\textstyle =$ $\displaystyle \left( \frac{\not{p}^\prime + m}{2m} \right) \left( \frac{1 +
\gamma_5\not{s}^\prime}{2} \right) \psi^\prime(\vec{x},t^\prime) ,$ (5.261)

where $p^\prime = (p_0,-\vec{p})$; $s^\prime = (s_0,-\vec{s})$ Therefore $\mathcal{T}$ projects out a free-particle solution with reversed direction of momentum $\vec{p}$ and spin $\vec{s}$. This is known as ``Wigner time reversal''.


next up previous contents index
Next: Combined PCT Symmetry Up: Dirac Equation Previous: Charge Conjugation
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18