next up previous contents index
Next: Covariance of the Continuity Up: Proof of Covariance Previous: Lorentz Boosts

Spatial Inversion

We now consider the improper Lorentz transformation of reflection in space or the parity transformation:


\begin{displaymath}
\vec{x}^\prime=-\vec{x}\quad \textrm{and}\quad t^\prime = t.
\end{displaymath} (5.149)

We need to solve (5.122) for


\begin{displaymath}
a^\nu_{\ \mu} = \left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\ ...
...& -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) = g^{\nu\mu} .
\end{displaymath} (5.150)

We denote the Lorentz operator $S(a)$ by $P$ for parity. Consider the following ansatz


\begin{displaymath}
P=e^{i\phi}\gamma_0,
\end{displaymath} (5.151)

where $\phi$ is an arbitrary phase. Using equation 5.122, we have


\begin{displaymath}
e^{-i\phi}\gamma_0\gamma^\nu e^{i\phi}\gamma_0 =
\gamma^0\gamma^\nu\gamma^0 = g^{\nu\mu} \gamma^\mu ,
\end{displaymath} (5.152)

as required.

In analogy to the proper Lorentz transformation for which a rotation of $4\pi$ reproduces the original spinors, we postulate that four space-inversions will reproduce the original spinors.


\begin{displaymath}
P^4\psi = \psi = (e^{i\phi}\gamma^0)^4\psi = e^{i4\phi}
(\gamma^0)^4\psi = e^{i4\phi} \psi .
\end{displaymath} (5.153)

Therefore


\begin{displaymath}
e^{i4\phi} = 1 \Rightarrow e^{i\phi} = \pm 1 \ \textrm{or}\ \pm
i .
\end{displaymath} (5.154)

We see that


$\displaystyle P^{-1}$ $\textstyle =$ $\displaystyle e^{-i\phi} \gamma^{-1}_0 = e^{-i\phi} \gamma_0,$ (5.155)
$\displaystyle P^\dagger$ $\textstyle =$ $\displaystyle e^{-i\phi} \gamma^\dagger_0 = e^{-i\phi} \gamma_0$ (5.156)

and $P^{-1} = P^\dagger \Rightarrow P$ is unitary.

The wave function thus transforms as


\begin{displaymath}
\psi^\prime(x^\prime) = \psi^\prime(-\vec{x},t) =
e^{i\phi}\gamma_0\psi(\vec{x},t) .
\end{displaymath} (5.157)

In the nonrelativisitc limit $\psi$ approaches an eigenstate of $P$. The positive- and negative-energy states at rest have opposite eigenvalues, or intrinsic parities. The intrinsic parity of a Dirac particle and antiparticle are opposite. This is to be contrasted to the Klein-Gordon case wherein one finds identical parities for the particle and antiparticle solutions.


next up previous contents index
Next: Covariance of the Continuity Up: Proof of Covariance Previous: Lorentz Boosts
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18