next up previous contents index
Next: Adjoint Spinor Up: Dirac Equation Previous: Spatial Inversion

Covariance of the Continuity Equation

As mentioned previously, we still need to show the conserved current is a 4-vector. We have


$\displaystyle j^0$ $\textstyle =$ $\displaystyle c\rho = c\psi^\dagger\psi =
c\psi^\dagger\gamma^0\gamma^0\psi,$ (5.158)
$\displaystyle j^k$ $\textstyle =$ $\displaystyle c\psi^\dagger\alpha^k\psi =
c\psi^\dagger\gamma^0\gamma^0\alpha^k\psi =
c\psi^\dagger\gamma^0\gamma^k\psi,$ (5.159)

Therefore


\begin{displaymath}
j^\mu(x) = c\psi^\dagger(x)\gamma^0\gamma^\mu\psi(x) .
\end{displaymath} (5.160)

Under a Lorentz transformation we have


$\displaystyle {j^\prime}^\mu(x^\prime)$ $\textstyle =$ $\displaystyle c\psi^\dagger(x) S^\dagger\gamma^0\gamma^\mu
S\psi(x)$  
  $\textstyle =$ $\displaystyle c\psi^\dagger(x)\gamma^0 S^{-1}\gamma^\mu S\psi(x)$  
  $\textstyle =$ $\displaystyle c\psi^\dagger(x)\gamma^0 a^\mu_{\ \nu}\gamma^\nu\psi(x)$  
  $\textstyle =$ $\displaystyle a^\mu_{\ \nu} j^\nu(x).$ (5.161)

Thus $j^\mu(x)$ is a Lorentz 4-vector.


next up previous contents index
Next: Adjoint Spinor Up: Dirac Equation Previous: Spatial Inversion
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18