next up previous contents index
Next: Spatial Inversion Up: Proof of Covariance Previous: Rotations

Lorentz Boosts

For an arbitrary direction of $\hat{v}=\vec{v}/\vert\vec{v}\vert$, we may write in terms of the direction cosines:


\begin{displaymath}
I^\mu_{\ \nu} = \left(
\begin{array}{cccc}
0 & -\cos\alpha &...
...& 0 & 0 & 0 \\
-\cos\gamma & 0 & 0 & 0
\end{array} \right) .
\end{displaymath} (5.144)

Raising the $\nu$ index makes $I^{\mu\nu}$ anti-symmetric. Also $\sigma_{\mu\nu}$ is anti-symmetric. Therefore


$\displaystyle \sigma_{\mu\nu}I^{\mu\nu}$ $\textstyle =$ $\displaystyle 2(\sigma_{01}\cos\alpha +
\sigma_{02}\cos\beta + \sigma_{03}\cos\gamma)$  
  $\textstyle =$ $\displaystyle 2i(\gamma_0\gamma_1\cos\alpha + \gamma_0\gamma_2\cos\beta +
\gamma_0\gamma_3\cos\gamma)$  
  $\textstyle =$ $\displaystyle -2i(\alpha_1\cos\alpha + \alpha_2\cos\beta + \alpha_3\cos\gamma)$  
  $\textstyle =$ $\displaystyle -2i\vec{\alpha}\cdot\hat{v} .$ (5.145)

From the properties of the $\alpha_i$ matrices, we have


\begin{displaymath}
(\vec{\alpha}\cdot\hat{v})^2 = 1 .
\end{displaymath} (5.146)

The finite spinor transformation for a general Lorentz boost becomes


$\displaystyle S$ $\textstyle =$ $\displaystyle \exp\left(-\frac{\omega}{2} \vec{\alpha}\cdot\hat{v}
\right)$  
  $\textstyle =$ $\displaystyle \cosh\left(-\frac{\omega}{2}\vec{\alpha}\cdot\hat{v}\right) +
\sinh\left(-\frac{\omega}{2}\vec{\alpha}\cdot\hat{v}\right)$  
  $\textstyle =$ $\displaystyle \cosh\left(\frac{\omega}{2}\vec{\alpha}\cdot\hat{v}\right) -
\sinh\left(\frac{\omega}{2}\vec{\alpha}\cdot\hat{v}\right)$  
  $\textstyle =$ $\displaystyle \cosh\frac{\omega}{2} -\vec{\alpha}\cdot\hat{v}
\sinh\frac{\omega}{2}$  
  $\textstyle =$ $\displaystyle \cosh\frac{\omega}{2} \left(1 - \vec{\alpha}\cdot\hat{v}
\tanh\frac{\omega}{2}\right).$ (5.147)

For a Lorentz boost $S^\dagger\neq S^{-1}$. However, by expanding $S$ in a power series, it has the property


\begin{displaymath}
\fbox{$\displaystyle
S^{-1} = \gamma_0 S^\dagger \gamma_0
$}\ .
\end{displaymath} (5.148)

This can also be generalized to include rotations.


next up previous contents index
Next: Spatial Inversion Up: Proof of Covariance Previous: Rotations
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18