next up previous contents index
Next: Covariant Form of the Up: Dirac Equation Previous: Constants of the Motion

Free Motion of a Dirac Particle

Consider the Dirac equation without potentials (free equation)


\begin{displaymath}
i\hbar\frac{\partial\psi}{\partial t} = \hat{H}_f\psi = (c\vec{\alpha}\cdot
\hat{p} + mc^2\beta)\psi .
\end{displaymath} (5.59)

Its stationary states are found with the ansatz


\begin{displaymath}
\psi_\lambda(\vec{x},t) = \psi(\vec{x}) e^{-i\lambda Et/\hbar} ,
\end{displaymath} (5.60)

where $\lambda=\pm 1$, and


$\displaystyle \hat{H}_f\psi$ $\textstyle =$ $\displaystyle i\hbar\psi(\vec{x}) (-i\lambda E/\hbar)
e^{-i\lambda Et/\hbar} ,$  
  $\textstyle =$ $\displaystyle \lambda E\psi .$ (5.61)

We split up the 4-component spinor into two 2-component spinors $\phi$ and $\chi$ to give


\begin{displaymath}
\psi = \left( \begin{array}{c}\phi_1\\ \phi_2\\ \phi_3\\
\p...
...ght) = \left( \begin{array}{c}\phi\\
\chi\end{array}\right) ,
\end{displaymath} (5.62)

where


\begin{displaymath}
\phi=\left(\begin{array}{c}\phi_1 \\ \phi_2\end{array}\right...
...\chi=\left(\begin{array}{c}\phi_3 \\ \phi_4\end{array}\right).
\end{displaymath} (5.63)

Substituting our definitions into the Dirac equation we have


\begin{displaymath}
\lambda E \left( \begin{array}{c}\phi\\ \chi\end{array} \rig...
...ight) \left
( \begin{array}{c}\phi\\ \chi\end{array} \right) ,
\end{displaymath} (5.64)


$\displaystyle \lambda E\phi$ $\textstyle =$ $\displaystyle c\vec{\sigma}\cdot\hat{p}\chi + mc^2\phi,$ (5.65)
$\displaystyle \lambda E\chi$ $\textstyle =$ $\displaystyle c\vec{\sigma}\cdot\hat{p}\phi - mc^2\chi.$ (5.66)

States with definite momentum can be written as


\begin{displaymath}
\left( \begin{array}{c}\phi\\ \chi\end{array} \right) = \lef...
...\\ \chi_0\end{array} \right)
e^{i\vec{p}\cdot\vec{x}/\hbar} .
\end{displaymath} (5.67)

We recognize that these states are eigenfunctions of the momentum operator:


\begin{displaymath}
\hat{p}\psi_{\vec{p}\lambda}(\vec{x},t) =
\vec{p}\psi_{\vec{p}\lambda}(\vec{x},t) .
\end{displaymath} (5.68)

Substitution into equations 5.65 and 5.66 gives


$\displaystyle \lambda E\phi_0$ $\textstyle =$ $\displaystyle c\vec{\sigma}\cdot\vec{p}\chi_0 + mc^2\phi_0 ,$ (5.69)
$\displaystyle \lambda E\chi_0$ $\textstyle =$ $\displaystyle c\vec{\sigma}\cdot\vec{p}\phi_0 - mc^2\chi_0 .$ (5.70)

Rearranging we have


$\displaystyle (\lambda E-mc^2)\phi_0 - c\vec{\sigma}\cdot\vec{p}\chi_0$ $\textstyle =$ $\displaystyle 0 ,$ (5.71)
$\displaystyle - c\vec{\sigma}\cdot\vec{p}\phi_0 + (\lambda E+mc^2)\chi_0$ $\textstyle =$ $\displaystyle 0 .$ (5.72)

For a solution we require


\begin{displaymath}
\lambda^2 E^2 - m^2c^4 - c^2(\vec{\sigma}\cdot\vec{p})^2 = 0.
\end{displaymath} (5.73)

Using identity 2.24 we have


\begin{displaymath}
E = \lambda\sqrt{\vec{p}^{\ 2}c^2 + m^2c^4} ,
\end{displaymath} (5.74)

where we have been careful with the sign of $\lambda$ when solving for both cases at ones.

We also have


\begin{displaymath}
\chi_0 = \frac{c\vec{\sigma}\cdot\vec{p}}{mc^2+\lambda E} \p...
...0 = \frac{c\vec{\sigma}\cdot\vec{p}}{-mc^2+\lambda E} \chi_0 .
\end{displaymath} (5.75)

Let us denote the two-component spinor $\phi_0$ by


\begin{displaymath}
\phi_0 = u = \left( \begin{array}{c}u_1\\ u_2\end{array} \right),
\end{displaymath} (5.76)

where $u_1$ and $u_2$ are complex and $u$ is normalized according to $u^\dagger u = u_1^*u_1 + u_2^*u_2=1$.

The complete set of positive- and negative-energy free solutions is


\begin{displaymath}
\psi_{\vec{p}\lambda}(\vec{x},t) = N \left( \begin{array}{c}...
...rray}\right)
e^{[i(\vec{p}\cdot\vec{x} - \lambda Et)/\hbar]} .
\end{displaymath} (5.77)

The normalization $N$ is determined from


\begin{displaymath}
\int d^3x {\psi_{\vec{p}\lambda}}^\dagger(\vec{x},t)
\psi_{\...
...delta_{\lambda\lambda^\prime} \delta(\vec{p}-\vec{p}^\prime) .
\end{displaymath} (5.78)


$\displaystyle N^2 \left( u^\dagger u + u^\dagger
\frac{c^2(\vec{\sigma}\cdot\vec{p})(\vec{\sigma}\cdot\vec{p})}
{(mc^2+\lambda E)^2} u\right)$ $\textstyle =$ $\displaystyle 1 ,$  
$\displaystyle N^2 \left( 1 + \frac{c^2\vec{p}^2}{(mc^2+\lambda E)^2} \right)$ $\textstyle =$ $\displaystyle 1 ,$ (5.79)

or


$\displaystyle N$ $\textstyle =$ $\displaystyle \sqrt{\frac{(mc^2+\lambda E)^2}{(mc^2+\lambda E)^2 +
c^2\vec{p}^{\ 2}}} ,$  
$\displaystyle N$ $\textstyle =$ $\displaystyle \sqrt{\frac{(mc^2+\lambda E)^2}{m^2c^4+E^2+2\lambda
mc^2E+c^2\vec{p}^2}} ,$  
$\displaystyle N$ $\textstyle =$ $\displaystyle \sqrt{\frac{(mc^2+\lambda E)^2}{2E(E+\lambda mc^2)}} ,$  
$\displaystyle N$ $\textstyle =$ $\displaystyle \sqrt{\frac{mc^2+\lambda E}{2\lambda E}} .$ (5.80)

We now show that another quantum number, helicity, can be used to classify free one-particle states. Define


\begin{displaymath}
\hat{s} = \frac{\hbar}{2} \vec{\Sigma} = \frac{\hbar}{2} \le...
...rray}{cc}\vec{\sigma}&0\\ 0&\vec{\sigma}\end{array} \right) .
\end{displaymath} (5.81)

This is the four dimensional generalization of the spin vector operator.

We form


\begin{displaymath}
\vec{\Sigma}\cdot\hat{p} = \left(
\begin{array}{cc}\vec{\sigma}&0\\ 0&\vec{\sigma}\end{array}\right)\cdot\hat{p}
\end{displaymath} (5.82)

and show that it commutes with the free Dirac Hamiltonian operator.


\begin{displaymath}[\hat{H}_f,\vec{\Sigma}\cdot\hat{p}]= [c\hat{\alpha}\cdot\hat{p} +
mc^2\hat{\beta},\vec{\Sigma}\cdot\hat{p}] .
\end{displaymath} (5.83)

Since $[\hat{\beta},\vec{\Sigma}]=0$, we need only consider


$\displaystyle [\hat{H}_f,\vec{\Sigma}\cdot\hat{p}]$ $\textstyle =$ $\displaystyle c[\hat{\alpha}\cdot\hat{p},
\vec{\Sigma}\cdot\hat{p}]$  
  $\textstyle =$ $\displaystyle c\hat{\alpha}\cdot\hat{p}\vec{\Sigma}\cdot\hat{p} - c
\vec{\Sigma}\cdot\hat{p}\hat{\alpha}\cdot\hat{p}$  
  $\textstyle =$ $\displaystyle c\left( \begin{array}{cc}
0&\vec{\sigma}\cdot\hat{p}\\  \vec{\sig...
...c}
0&\vec{\sigma}\cdot\hat{p}\\  \vec{\sigma}\cdot\hat{p}&0
\end{array} \right)$  
  $\textstyle =$ $\displaystyle c\left( \begin{array}{cc}
0&(\vec{\sigma}\cdot\hat{p})^2\\  (\vec...
...vec{\sigma}\cdot\hat{p})^2\\  (\vec{\sigma}\cdot\hat{p})^2&0
\end{array}\right)$  
  $\textstyle =$ $\displaystyle 0 .$ (5.84)

Also $[\hat{p},\vec{\Sigma}\cdot\hat{p}]=0$, therefore $\vec{\Sigma}\cdot\hat{p}, \hat{H}_f, \hat{p}$ can all be diagonalized together.

$\vec{\Sigma}\cdot\hat{p}$ can be rewritten as the helicity operator


\begin{displaymath}
\hat{\Lambda}_S = \frac{\hbar}{2}
\vec{\Sigma}\cdot\frac{\ha...
...ec{p}\vert} =
\hat{s}\cdot\frac{\hat{p}}{\vert\vec{p}\vert} .
\end{displaymath} (5.85)

Helicity is the projection of the spin onto the direction of the momentum.

For an electron propagating in the $z$-direction $\vec{p}=(0,0,p)$,


\begin{displaymath}
\hat{\Lambda}_S = \hat{s}_z = \frac{\hbar}{2} \vec{\Sigma}_z...
...} 1&0&0&0\\ 0&-1&0&0\\
0&0&1&0\\ 0&0&0&-1 \end{array} \right)
\end{displaymath} (5.86)

with eigenvalues $\pm\hbar/2$. The eigenvectors of $\hat{\Lambda}_S$ are


\begin{displaymath}
\left(\begin{array}{c} u_1\\ 0 \end{array}\right), \quad
\le...
...), \quad
\left(\begin{array}{c} 0\\ u_{-1} \end{array}\right),
\end{displaymath} (5.87)

with


\begin{displaymath}
u_1 = \left(\begin{array}{c} 1\\ 0 \end{array}\right) \quad
...
...quad
u_{-1} = \left(\begin{array}{c} 0\\ 1 \end{array}\right).
\end{displaymath} (5.88)

We can write $\psi_{p_z,\lambda,s_z}(\vec{x},t)$, where


$\displaystyle \psi_{p_z,\lambda,+1/2}$ $\textstyle =$ $\displaystyle N
\left(\begin{array}{c}
\left(\begin{array}{c}
1 \\  0
\end{arra...
...}{c}
1 \\  0
\end{array}\right)
\end{array}\right)
e^{[i(pz-\lambda Et)/\hbar]}$ (5.89)
$\displaystyle \psi_{p_z,\lambda,-1/2}$ $\textstyle =$ $\displaystyle N
\left(\begin{array}{c}
\left(\begin{array}{c}
0 \\  1
\end{arra...
...}{c}
0 \\  1
\end{array}\right)
\end{array}\right)
e^{[i(pz-\lambda Et)/\hbar]}$ (5.90)

and


\begin{displaymath}
\int d^3x
{\psi_{p_z,\lambda,s_z}}^\dagger\psi_{p_z^\prime,\...
...ambda^\prime} \delta_{s_zs_z^\prime}
\delta(p_z-p_z^\prime) .
\end{displaymath} (5.91)

We thus see that we have two independent states for a positive-energy electron:


$\displaystyle \phi^1$ $\textstyle =$ $\displaystyle \left(\begin{array}{c} 1 \\  0 \end{array}\right)
\quad\textrm{spin up} ,$ (5.92)
$\displaystyle \phi^2$ $\textstyle =$ $\displaystyle \left(\begin{array}{c} 0 \\  1 \end{array}\right)
\quad\textrm{spin down} .$ (5.93)

We expect the absence of ``spin-up'' to be equivalent to the presence of ``spin-down''. This implies that a negative-energy solution with spin down is equivalent to a positive-energy solution with spin up. We choose


$\displaystyle \chi^1$ $\textstyle =$ $\displaystyle \left(\begin{array}{c} 1 \\  0 \end{array}\right) ,$ (5.94)
$\displaystyle \chi^2$ $\textstyle =$ $\displaystyle \left(\begin{array}{c} 0 \\  1 \end{array}\right) .$ (5.95)

Why dose the Dirac spinor need four components to describe a spin-1/2 particle? The answer has to do with parity. in a relativistic theory, we would not be able to represent the effect of parity satisfactorily with only two components.


next up previous contents index
Next: Covariant Form of the Up: Dirac Equation Previous: Constants of the Motion
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18