next up previous contents index
Next: Free Motion of a Up: Dirac Equation Previous: Nonrelativistic Limit of the


Constants of the Motion

Constants of the motions are those dynamic variables that commute with the Hamiltonian. For a free particle ($\hbar=c=1$)


\begin{displaymath}
H = \vec{\alpha}\cdot\vec{p} + \beta m .
\end{displaymath} (5.47)

With the usual definition of the orbital angular momentum


\begin{displaymath}
\vec{L} = \vec{x}\times\vec{p}
\end{displaymath} (5.48)

we find that none of the components of $\vec{L}$ commute with $H$. Thus the orbital angular momentum is not a constant of the motion. On the other hand we find that


\begin{displaymath}
\vec{J} = \vec{L} + \frac{1}{2}\vec{\Sigma}
\end{displaymath} (5.49)

with


\begin{displaymath}
\vec{\Sigma} = \left( \begin{array}{cc} \vec{\sigma} & 0 \\ 0 &
\vec{\sigma} \end{array} \right)
\end{displaymath} (5.50)

does commute with $H$ and thus is a constant of the motion.

We now prove this statement. To do this, we simply verify that this result is true for $J_1$. Clearly,


\begin{displaymath}[J_1,H]= [J_1,\vec{\alpha}\cdot\vec{p}] =
[L_1,\vec{\alpha}\cdot\vec{p}] + \frac{1}{2}
[\Sigma_1,\vec{\alpha}\cdot\vec{p}] .
\end{displaymath} (5.51)

For the first term in equation 5.51,


\begin{displaymath}[L_1,\vec{\alpha}\cdot\vec{p}]= \alpha_i [x_2 p_3 - x_3 p_2,p...
...i(\alpha_2p_3-\alpha_3p_2) =
-i(\vec{p}\times\vec{\alpha})_1 .
\end{displaymath} (5.52)

For the second term in equation 5.51, we make use of the relationship


\begin{displaymath}
\vec{\Sigma} = \gamma^5 \vec{\alpha} = \vec{\alpha} \gamma^5 ,
\end{displaymath} (5.53)

where $\gamma^5 = \left( \begin{array}{cc} 0 & 1 \\
1 & 0 \end{array} \right)$ . Using $\gamma^5$ we have


\begin{displaymath}[\Sigma_1,\vec{\alpha}\cdot\vec{p}]=
[\gamma^5\alpha_1,\vec{\alpha}\cdot\vec{p}] =
\gamma^5[\alpha_1,\alpha_i]p_i .
\end{displaymath} (5.54)

Since


\begin{displaymath}[\alpha_i,\alpha_j]= 2i\epsilon_{ijk}\Sigma_k ,
\end{displaymath} (5.55)

we get


\begin{displaymath}
\frac{1}{2}[\Sigma_1,\vec{\alpha}\cdot\vec{p}] =
i\gamma^5\epsilon_{1ij} \Sigma_j p_i =
i(\vec{p}\times\vec{\alpha})_1 .
\end{displaymath} (5.56)

Thus, we have shown that


\begin{displaymath}[J_1,\vec{\alpha}\cdot\vec{p}]= 0 .
\end{displaymath} (5.57)

By symmetry it now follows that quite generally


\begin{displaymath}[\vec{J},\vec{\alpha}\cdot\vec{p}]= 0 .
\end{displaymath} (5.58)

As a consequence we have that $J^2, J_3$ and $H$ can be simultaneously diagonalized.

The bonus embodied in the Dirac equation is the extra twofold degeneracy. This means that there must be another observable which commutes with $H$ and $\hat{p}$, whose eigenvalues can be taken to distinguish the states. On inspection, we see that the operator $\vec{\Sigma}\cdot\hat{p}$ commutes with $H$ and $\hat{p}$; $\hat{p}$ is the unit vector pointing in the direction of the momentum, $\vec{p}/\vert\vec{p}\vert$. The ``spin'' component in the direction of the motion, $\frac{1}{2}\vec{\sigma}\cdot\hat{p}$, is therefore a ``good'' quantum number and can be used to label the solutions. We call this quantum number the helicity of the state.


next up previous contents index
Next: Free Motion of a Up: Dirac Equation Previous: Nonrelativistic Limit of the
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18