next up previous contents index
Next: Dirac Particle at Rest Up: Dirac Equation Previous: Wave Equation for a

Current Conservation

The hermitian conjugate wave function is $\psi^\dagger =
(\psi_1^*,\psi_2^*,\psi_3^*,\psi_4^*)$. Multiplying the Dirac equation by the conjugate wave function from the left gives


\begin{displaymath}
i\hbar \psi^\dagger\frac{\partial\psi}{\partial t} = \frac{\...
...ac{\partial\psi}{\partial
x^k} + mc^2\psi^\dagger\beta\psi .
\end{displaymath} (5.11)

Forming the Dirac equation for the conjugate wave function and multiplying by the wave function from the right gives


\begin{displaymath}
-i\hbar \frac{\partial\psi^\dagger}{\partial t} \psi = -\fra...
...er}{\partial x^k} \alpha_k\psi +
mc^2\psi^\dagger\beta\psi ,
\end{displaymath} (5.12)

where $\alpha_i^\dagger = \alpha_i$ and $\beta^\dagger = \beta$. Subtracting (5.11) from (5.12) gives


\begin{displaymath}
i\hbar \frac{\partial}{\partial t} \psi^\dagger\psi = \sum_{...
...{i} \frac{\partial}{\partial x^k}
(\psi^\dagger\alpha^k\psi) .
\end{displaymath} (5.13)

Writing the result as a continuity equation, $\frac{\partial\rho}{\partial t} + \vec{\nabla}\cdot\vec{j} = 0$, gives the probability density


\begin{displaymath}
\rho = \psi^\dagger\psi ,
\end{displaymath} (5.14)

and the probability current


\begin{displaymath}
j^k = c\psi^\dagger\alpha^k\psi ,
\end{displaymath} (5.15)

where $c\alpha^k$ is like a velocity operator.

Integrating over all space and using the divergence theorem gives


$\displaystyle \int d^3x \frac{\partial\rho}{\partial t} + \int d^3x
\vec{\nabla}\cdot\vec{j}$ $\textstyle =$ $\displaystyle 0 ,$  
$\displaystyle \frac{\partial}{\partial t} \int d^3x\rho + \int \vec{j}\cdot d\vec{S}$ $\textstyle =$ $\displaystyle 0 ,$  
$\displaystyle \frac{\partial}{\partial t} \int d^3x\psi^\dagger\psi$ $\textstyle =$ $\displaystyle 0 .$ (5.16)

We have now proven the first two conditions required of the Dirac equation but we still have to show (c$\rho,\vec{j}$) forms a 4-vector under a Lorentz transformation and that the Dirac equation is Lorentz covariant.


next up previous contents index
Next: Dirac Particle at Rest Up: Dirac Equation Previous: Wave Equation for a
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18