next up previous
Next: Curvature, Riemann and Ricci Up: geom_formulas Previous: The metric tensor

Affine connection (Christoffel symbols)

Affine connection $\Gamma^{\alpha}_{\beta\gamma}$ describes relation between vectors at two neighbouring points.
\begin{displaymath}
\delta V^{\alpha} = - \Gamma^{\alpha}_{\beta\gamma} V^{\beta} dx^{\gamma}
\end{displaymath} (10)

Covariant derivatives
We denote ordinary derivatives with comma and the covariant ones with semicolon
$\displaystyle S_{;\mu}$ $\textstyle =$ $\displaystyle S_{,\mu} ~~~-~~~ for~scalars~derivatives~are~equal.$ (11)
$\displaystyle V^{\alpha}_{;\mu}$ $\textstyle =$ $\displaystyle V^{\alpha}_{,\mu} + \Gamma^{\alpha}_{\mu\gamma} V^{\gamma}$ (12)
$\displaystyle V_{\alpha;\mu}$ $\textstyle =$ $\displaystyle V_{\alpha,\mu} - \Gamma^{\gamma}_{\mu\alpha} V_{\gamma}$ (13)
$\displaystyle T^{\beta}_{\alpha;\mu}$ $\textstyle =$ $\displaystyle T^{\beta}_{\alpha,\mu} - \Gamma^{\gamma}_{\mu\alpha} T^{\beta}_{\gamma} + \Gamma^{\beta}_{\mu\gamma} T^{\gamma}_{\alpha}$ (14)

Relation between $\Gamma^{\alpha}_{\beta\gamma}$ and $g_{\alpha\beta}$:

In GR we use affine connection which is related to the first derivatives of the metric tensor by the requirement that $g_{\alpha\beta ; \mu} = 0$ and restriction that connection is symmetric $\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} $. Then

\begin{displaymath}
\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} g^{\alpha\sigma}...
...
+ g_{\sigma\gamma , \beta} - g_{\beta\gamma , \sigma} \right)
\end{displaymath} (15)


next up previous
Next: Curvature, Riemann and Ricci Up: geom_formulas Previous: The metric tensor
Dmitri Pogosyan 2006-09-28