next up previous contents index
Next: Conserved Current and Charge Up: Klein-Gordon Equation Previous: Solutions of the Klein-Gordon

General Solution of the Klein-Gordon Equation

Besides plane-wave solutions of definite momentum, we can have solutions which are the Fourier transform of $\tilde{\phi}^{(\pm)}(p)$ which depend only on momentum:


\begin{displaymath}
\phi^{(\pm)}(x) = \frac{1}{\sqrt{(2\pi)^3}} \int \frac{d^3p}{\sqrt{2E}}
e^{-ip\cdot x} \tilde{\phi}^{(\pm)}(p).
\end{displaymath} (4.23)

The relativistic invariance of solutions of this form is not immediately obvious.

The general solution to the Klein-Gordon equation has either positive or negative energy. They can be written (using $\hbar = c = 1$) as a Fourier transform of $\tilde{\phi}_a^{(\pm)}(p)$,


\begin{displaymath}
\phi_a^{(\pm)} = \frac{\sqrt{2}}{\sqrt{(2\pi)^3}} \int d^4p ...
...ot x} \delta(p^2-m^2)\theta(\pm p)\tilde{\phi}_a^{(\pm)}(p)
,
\end{displaymath} (4.24)

where the index $a$ is used to label different solutions of identical mass. This form is manifestly Lorentz invariant. The Lorentz invariant step function is


\begin{displaymath}
\theta(p) \equiv \theta(p_0) \equiv \left\{
\begin{array}{l}...
...m{1 if $p^0>0$}, \\
\textrm{0 if $p^0<0$}.
\end{array}\right.
\end{displaymath} (4.25)

Lorentz invariance of $\delta(p^2-m^2)$ restricts $p$ to be a time-like vector and thus $\theta(p)$ distinguishes between past and future. Thus the expression $\int dp_0\delta(p^2-m^2)\theta(\pm p)$ ensures the condition $p^0 = \pm\sqrt{\vec{p}^{\: 2}+m^2}$.

We can show that equation 4.24 gives rise to the usual form of the solutions by rewriting the general solution, using


\begin{displaymath}
\delta(p^2-m^2) = \delta(p_0^2-\vec{p}^{\: 2}-m^2) = \delta(p_0^2-E^2)
\end{displaymath} (4.26)

and then applying the identity equation 2.28.

For positive energy


$\displaystyle \phi_a^{(+)}(x)$ $\textstyle =$ $\displaystyle \frac{2^{1/2}}{(2\pi)^{3/2}} \int d^3p dp_0 \sqrt{E}
\left[\frac{...
...2E}\right]
\theta(p_0) e^{-i(p_0t-\vec{p}\cdot\vec{x})}
\tilde{\phi}_a^{(+)}(p)$  
  $\textstyle =$ $\displaystyle \frac{1}{(2\pi)^{3/2}} \int \frac{d^3p}{\sqrt{2E}}
e^{-i(Et-\vec{p}\cdot\vec{x})} \tilde{\phi}_a^{(+)}(p) ,$ (4.27)


\begin{displaymath}
\phi_a^{(+)}(x) = \frac{1}{\sqrt{(2\pi)^3}} \int \frac{d^3p}{\sqrt{2E}}
e^{-ip\cdot x} \tilde{\phi}_a^{(+)}(p) .
\end{displaymath} (4.28)

For negative energy


$\displaystyle \phi_a^{(-)}(x)$ $\textstyle =$ $\displaystyle \frac{2^{1/2}}{(2\pi)^{3/2}} \int d^3p dp_0 \sqrt{E}
\left[\frac{...
...E}\right]
\theta(-p_0) e^{-i(p_0t-\vec{p}\cdot\vec{x})}
\tilde{\phi}_a^{(-)}(p)$  
  $\textstyle =$ $\displaystyle \frac{1}{(2\pi)^{3/2}} \int \frac{d^3p}{\sqrt{2E}}
e^{i(Et+\vec{p}\cdot\vec{x})} \tilde{\phi}_a^{(-)}(p) ,$ (4.29)


\begin{displaymath}
\phi_a^{(-)}(x) = \frac{1}{\sqrt{(2\pi)^3}} \int \frac{d^3p}{\sqrt{2E}}
e^{+ip\cdot x} \tilde{\phi}_a^{(-)}(p) .
\end{displaymath} (4.30)

Equations 4.28 and 4.30 are identical to the previously solutions (equation 4.23).


next up previous contents index
Next: Conserved Current and Charge Up: Klein-Gordon Equation Previous: Solutions of the Klein-Gordon
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18