Univ. of Alberta crest

Morris R. Flynn, PhD, PEng
Professor, Dept. of Mechanical Engineering
Adjunct professor, Dept. of Mathematical and Statistical Sciences
Univ. of Alberta

10-226 Donadeo ICE Bldg.
Office phone
Mailing address
Dept. of Mech. Eng. 
Univ. of Alberta
Edmonton, AB
T6G 1H9

2007/08 - Post-doc. (Applied Math) MIT
2006 - Ph.D. (Eng. Science) UCSD
2003 - M.Sc. (Applied Math) U. Alberta
2000 - B.Sc. (Chem. Eng.) U. Alberta

Academic family tree

Google scholar page

Research interests (sorted alphabetically):

1. BUCKLING OF THIN, VISCOUS FILMS: Pull on a piece of SaranTM wrap and you will see a series of wrinkles develop with roughly evenly spaced crests. Comparable buckling behavior is also possible when considering thin, viscous films. The analogy between one and the other class of problems is termed the Stokes-Rayleigh analogy and enjoys a rich history. In either case, an effective analytical tool is the Foppl-von Karman equation, which describes out-of-plane deformation due to in-plane shear. In its fluidic incarnation, the Foppl-von Karman equation possess unusual singularities, but may still exhibit a robust agreement with analogue laboratory measurements. (More info).

2. BUOYANT CONVECTION IN POROUS MEDIA: The injection of super-critical carbon dioxide (sc-CO2) into deep saline aquifers represents one of the more promising alternatives for the sequestration of anthropogenically-produced CO2. Because sc-CO2 is less dense than brine, however, saline aquifer injection can only be considered a feasible disposal alternative if dissolution occurs before the sc-CO2 finds a return pathway to the surface e.g. through abandoned wells. Addressing this question requires an understanding of the timescales associated with the flow and drainage of a sc-CO2 plume in a "leaky" porous medium. (More info).

3. CONTINUUM MODELS OF TRAFFIC FLOW: As with fluid mechanics, a fruitful avenue for understanding traffic flow is to model the stream of particles (in this case vehicles) as a continuum. One may thereby borrow ideas and analytical techniques familiar from shallow water theory and gasdynamics in understanding, for example, the complicated behavior of "phantom jams," which arise in the absence of bottlenecks and lane closures. This information may in turn be incorporated in sophisticated traffic control algorithms that seek to maximize the throughput efficiency of modern roadways. (More info).

4. GRAVITY CURRENT AND INTRUSIONS: Gravity currents, horizontal flows driven by small density differences, are ubiquitous in the natural and man-made environment. (Sea breeze fronts and saline wedges in estuaries offer two common examples). An important goal of my research is to characterize the properties of gravity currents (e.g. their speed and shape) based on the corresponding initial conditions using numerical, experimental and/or theoretical modeling. (More info).

5. INTERNAL GRAVITY WAVES: Throw a pebble into a body of water and you will observe a series of concentric waves emanating from the point of impact. In a similar fashion, waves can be excited inside a fluid that exhibits a continuous density-stratification of density e.g. the ocean or atmosphere. Understanding the dynamics of these waves, e.g. how they are generated by oscillating solid bodies and how to efficiently decompose a wavefield into its modal constituents, remain topics of keen interest that have a particular bearing on tidal conversion. (More info).

6. NATURAL VENTILATION/ARCHITECTURAL FLUID MECHANICS: Strategies for ventilating modern buildings without energy-intensive equipment are being rapidly developed, but many of the fundamental theoretical issues underlying this technology remain unresolved. In particular, it is unclear how to best optimize system performance given that real buildings have a complicated internal geometry and are forced by a combination of internal and external factors. Examining these issues, particularly as they relate to buoyancy-driven turbulent flow, necessitates a combination of theory and lab- or full-scale experiment. (More info).

7. PLASTRON RESPIRATION BY AQUATIC INSECTS: Using tools familiar to engineers e.g. Laplace's and Bernoulli's equations, one can gain particular insights into the phenomenon of plastron respiration, which allows select species of insects to breathe underwater without benefit of gills. In extreme cases (e.g. Neoplea striola, a backswimmer found in New England), insects can remain submerged for long periods of time, i.e. several months or more. Research in this area is inherently multidisciplinary requiring a combination of mechanics, chemistry and biology. (More info).

  • Banting Postdoctoral Fellowships (Canadian citizens and permanent residents OR international applicants)
  • Government of Alberta - InnoTech Alberta (Canadian citizens and permanent residents OR international applicants)
  • Killam Trusts (Canadian citizens and permanent residents OR international applicants)
  • Government of Canada -- MITACS (Canadian citizens and permanent residents OR international applicants)
  • Univ. of Alberta (Canadian citizens and permanent residents OR international applicants)
  • Vanier Scholarships (Canadian citizens and permanent residents OR international applicants)

  • Government of Canada - NSERC (Canadian citizens and permanent residents)

  • China Scholarship Council/Univ. of Alberta Graduate Scholarship Program (Chinese citizens)
  • Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) (Chilean citizens)
  • Consejo Nacional de Ciencia y Tecnologia (CONACYT) (Mexican citizens)
  • Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Brazilian citizens)
  • Emerging Leaders in the Americas Program (Latin American citizens)
  • Erasmus Mundus Scholarships (EU citizens)
  • Marie Curie International Outgoing Fellowships (EU citizens)

  • Special information for international applicants
  • Information regarding Univ. of Alberta International
  • Graduate student housing information