next up previous contents index
Next: Theorem 4 Up: Trace Theorems Previous: Theorem 2

Theorem 3


\begin{displaymath}
\textrm{Tr}[\not{\;\!\!a}_1\cdots\not{\;\!\!a}_n] =
a_1\cdo...
...t a_n \textrm{Tr}[\not{\;\!\!a}_2\cdots \not{\;\!\!a}_{n-1}] .
\end{displaymath} (7.61)

In particular


\begin{displaymath}
\textrm{Tr}[\not{\;\!\!a}_1\not{\;\!\!a}_2\not{\;\!\!a}_3\no...
... +
a_1\cdot a_4 a_2\cdot a_3 -
a_1\cdot a_3 a_2\cdot a_4) .
\end{displaymath} (7.62)

Proof: Using $\not{\;\!\!a}_1\not{\;\!\!a}_2 = - \not{\;\!\!a}_2\not{\;\!\!a}_1 + 2
a_1\cdot a_2$,


$\displaystyle \textrm{Tr}[\not{\;\!\!a}_1\not{\;\!\!a}_2\cdots\not{\;\!\!a}_n]$ $\textstyle =$ $\displaystyle 2a_1\cdot a_2\textrm{Tr}[\not{\;\!\!a}_3\cdots\not{\;\!\!a}_n]
- \textrm{Tr}[\not{\;\!\!a}_2\not{\;\!\!a}_1\not{\;\!\!a}_3\cdots\not{\;\!\!a}_n]$  
  $\textstyle =$ $\displaystyle 2a_1\cdot a_2 \textrm{Tr}[\not{\;\!\!a}_3\cdots\not{\;\!\!a}_n] - \cdots$  
  $\textstyle +$ $\displaystyle 2a_1\cdot a_n \textrm{Tr}[\not{\;\!\!a}_2\cdots \not{\;\!\!a}_{n-1}]
- \textrm{Tr}[\not{\;\!\!a}_2\cdots\not{\;\!\!a}_n\not{\;\!\!a}_1] .$ (7.63)

Using the cyclic property of the trace proves the theorem.

This also shows


$\displaystyle b_\mu d_\nu \textrm{Tr}[\not{a}\gamma^\mu\not{c}\gamma^\nu]$ $\textstyle =$ $\displaystyle 4(a^\mu b_\mu c^\nu d_\nu + a^\nu d_\nu b_\mu c^\mu - a\cdot c b_\mu
d^\mu)$  
  $\textstyle =$ $\displaystyle b_\mu d_\nu 4 (a^\mu c^\nu + a^\nu c^\mu - a\cdot c g^{\mu\nu})$  
$\displaystyle \Rightarrow \textrm{Tr}[\not{a}\gamma^\mu\not{c}\gamma^\nu]$ $\textstyle =$ $\displaystyle 4(a^\mu c^\nu + a^\nu b^\mu - a\cdot c g^{\mu\nu}) .$ (7.64)


next up previous contents index
Next: Theorem 4 Up: Trace Theorems Previous: Theorem 2
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18