next up previous contents index
Next: Theorem 2 Up: Trace Theorems Previous: Trace Theorems

Theorem 1

The trace of an odd number of $\gamma$ matrices is zero.

Proof: For $n$ odd,


$\displaystyle \textrm{Tr}[\not{\;\!\!a}_1\cdots\not{\;\!\!a}_n]$ $\textstyle =$ $\displaystyle \textrm{Tr}[\not{\;\!\!a}_1\cdots\not{\;\!\!a}_n\gamma_5\gamma_5]...
...ma_5]
= (-1)^n\textrm{Tr}[\not{\;\!\!a}_1\cdots\not{\;\!\!a}_n\gamma_5\gamma_5]$  
  $\textstyle =$ $\displaystyle 0 \quad\textrm{for $n$\ odd}.$ (7.57)



Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18