next up previous contents index
Next: QED Processes Up: Propagator Methods Previous: Positron Scattering

Problems

  1. Show that $S_F(x^{\prime},x)$ reduces to the free-particle retarded propagator of the Schördinger equation in the nonrelativistic limit.

  2. Calculate $S_F(x)$ explicitly. How does it behave as $x\rightarrow\infty$, as $x\rightarrow 0$, and on the light cone?

  3. Show that the forms


    \begin{displaymath}
S_F(x^{\prime}-x) = -i \int \frac{d^3p}{(2\pi)^3}
e^{i\vec{p...
...ot\vec{\gamma} + m}{2E}
\quad\textrm{for}\quad t^{\prime} > t
\end{displaymath}

    and


    \begin{displaymath}
S_F(x^{\prime}-x) = -i \int \frac{d^3p}{(2\pi)^3}
e^{i\vec{p...
...ot\vec{\gamma} + m}{2E}
\quad\textrm{for}\quad t^{\prime} < t
\end{displaymath}

    can be combined into a single expression by using projection operators.

  4. Verify


    \begin{displaymath}
\theta(t^{\prime}-t)\psi^{(+)}(x^{\prime}) = i\int d^3x S_F(x^{\prime}-x)
\gamma_0 \psi^{(+)}(x)
\end{displaymath}

    and


    \begin{displaymath}
\theta(t-t^{\prime})\psi^{(-)}(x^{\prime}) = -i\int d^3x S_F(x^{\prime}-x)
\gamma_0 \psi^{(-)}(x)
\end{displaymath}

    and derive analogous relations for the adjoint solutions $\overline{\psi}^{(+)}$ and $\overline{\psi}^{(-)}$.



Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18