next up previous contents index
Next: Spin Projection Operators Up: Projection Operators for Energy Previous: Projection Operators for Energy

Energy Projection Operators

The positive and negative-energy projection operators can be guessed from the Dirac equation in momentum space, equation 5.187,


\begin{displaymath}
\fbox{$\displaystyle
\Lambda_r(p) = \frac{\epsilon_r\not{\!p...
...or}\quad
\Lambda_{\pm}(p) = \frac{\pm\not{\!p}+mc}{2mc}
$}\ .
\end{displaymath} (5.206)

Applying the ``trial'' positive-energy projection operator to an arbitrary Dirac spinor and using equation 5.187, we have


\begin{displaymath}
\Lambda_+(p) w^r(p) = \frac{\not{\;\!\!\!p}+ mc}{2mc} w^r(p)...
...trm{for}\ r=1,2 \\ 0 & \textrm{for}\ r=3,4 \end{array}\right.
\end{displaymath} (5.207)

and similarly for the negative-energy operator, as required.

Applying the operator twice we have


\begin{displaymath}
\Lambda_r\Lambda_{r^\prime} =
\frac{\epsilon_r\epsilon_{r^\p...
...epsilon_r+\epsilon_{r^\prime})\not{\!p}mc + m^2c^2}{4m^2c^2} .
\end{displaymath} (5.208)

Since $\not{\!p}\not{\!p} = p_\mu p_\nu \gamma^\mu\gamma^\nu = 1/2
p_\mu p_\nu (\gamma^\mu\gamma^\nu + \gamma^\nu\gamma^\mu) = p_\mu
p_\nu g^{\mu\nu} = p^2 = m^2c^2$ ,


$\displaystyle \Lambda_r\Lambda_{r^\prime}$ $\textstyle =$ $\displaystyle \frac{(\epsilon_r+\epsilon_{r^\prime})\not{\!p} +
(1+\epsilon_r\epsilon_{r^\prime})mc}{4mc}$  
  $\textstyle =$ $\displaystyle \left( \frac{1+\epsilon_r\epsilon_{r^\prime}}{2} \right) \Lambda_r .$ (5.209)

Therefore


\begin{displaymath}
\Lambda_{\pm}^2(p) = \Lambda_{\pm}(p) \quad\textrm{and}\quad
\Lambda_{\pm}(p)\Lambda_\mp(p) = 0
\end{displaymath} (5.210)

as required of a projection operator.

Also


\begin{displaymath}
\Lambda_+(p) + \Lambda_-(p) = \frac{\not{\!p}+mc}{2mc} +
\frac{-\not{\!p}+mc}{2mc} = 1 ,
\end{displaymath} (5.211)

as required.


next up previous contents index
Next: Spin Projection Operators Up: Projection Operators for Energy Previous: Projection Operators for Energy
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18