next up previous contents index
Next: Homogeneous Green Function Up: Klein-Gordon Equation Previous: Klein Paradox for Spin-0

Coulomb Interaction

Consider the Coulomb interaction


\begin{displaymath}
A_0 = -\frac{Ze}{r}\quad \textrm{and}\quad \vec{A} = 0
\end{displaymath} (4.156)

and the substitution


\begin{displaymath}
\hat{p}_\mu \rightarrow \hat{p}_\mu - \frac{e}{c} A_\mu .
\end{displaymath} (4.157)

The Klein-Gordon equation with a Coulomb potential is


$\displaystyle \left[(i\hbar\partial^\mu - \frac{e}{c}A^\mu)^2 - m^2c^2\right]\Phi$ $\textstyle =$ $\displaystyle 0 ,$  
$\displaystyle \left[(i\hbar\partial_0 - \frac{e}{c}A_0)^2 - (-i\hbar\vec{\nabla} -
\frac{e}{c}\vec{A})^2 - m^2c^2\right]\Phi$ $\textstyle =$ $\displaystyle 0 ,$  
$\displaystyle \left[(i\hbar\partial_t -eA_0)^2 + \hbar^2c^2\nabla^2 -
m^2c^4\right]\Phi$ $\textstyle =$ $\displaystyle 0 .$ (4.158)

For stationary states $\Phi = e^{-iEt/\hbar}\phi(\vec{x})$ we can write


\begin{displaymath}
\left( E + \frac{Ze^2}{r} \right)^2\phi + (\hbar^2c^2\nabla^2 -
m^2c^4)\phi = 0 .
\end{displaymath} (4.159)

For spherical coordinates


\begin{displaymath}
\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(
...
...
\frac{1}{r^2\sin^2\theta} \frac{\partial^2}{\partial\phi^2} ,
\end{displaymath} (4.160)


\begin{displaymath}
\phi(r,\theta,\phi) = R(r) Y_l^m(\theta,\phi) .
\end{displaymath} (4.161)


\begin{displaymath}
\Rightarrow \nabla^2 = \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{d}{dr}
\right) - \frac{l(l+1)}{r^2} ,
\end{displaymath} (4.162)

where $l = 0,1,2,...$. The Klein-Gordon equation in spherical coordinates is


\begin{displaymath}
\left[ \frac{(E+Ze^2/r)^2 - m^2c^4}{\hbar^2c^2} \right]R = \...
...left( r^2\frac{d}{dr} \right)
+ \frac{l(l+1)}{r^2} \right] R .
\end{displaymath} (4.163)


\begin{displaymath}
\frac{1}{r^2} \frac{d}{dr} \left( r^2\frac{dR}{dr} \right) +...
...ac{Z^2e^4}{\hbar^2c^2r^2} - \frac{l(l+1)}{r^2} \right] R = 0 .
\end{displaymath} (4.164)

Defining $\frac{E^2-m^2c^4}{\hbar^2c^2} \equiv -\frac{\alpha^2}{4}$ we can write


\begin{displaymath}
\frac{1}{r^2} \frac{d}{dr} \left( r^2\frac{dR}{dr} \right)
...
...c^2\alpha^2r^2} + \frac{4l(l+1)}{\alpha^2r^2}
\right] R = 0 .
\end{displaymath} (4.165)

Defining $\gamma \equiv \frac{Ze^2}{\hbar c}$ we can write


\begin{displaymath}
\frac{1}{r^2} \frac{d}{dr} \left( r^2\frac{dR}{dr} \right)
...
...ha^2r} -
4\frac{\gamma^2-l(l+1)}{\alpha^2r^2} \right] R = 0 .
\end{displaymath} (4.166)

Defining $\lambda \equiv \frac{2E\gamma}{\hbar c\alpha}$ we can write


$\displaystyle \frac{1}{r^2} \frac{d}{dr} \left( r^2\frac{dR}{dr} \right)$ $\textstyle -$ $\displaystyle \frac{\alpha^2}{4} \left[ 1 - \frac{4\lambda}{\alpha r} -
4\frac{\gamma^2-l(l+1)}{(\alpha r)^2} \right] R = 0 ,$  
$\displaystyle \frac{1}{r^2} \frac{d}{dr} \left( r^2\frac{dR}{dr} \right)$ $\textstyle +$ $\displaystyle \alpha^2 \left[ \frac{\lambda}{\alpha r} - \frac{1}{4} -
\frac{l(l+1)-\gamma^2}{(\alpha r)^2} \right] R = 0 .$ (4.167)

Defining $\rho \equiv \alpha r$ and $\frac{d}{dr} =
\frac{d\rho}{dr}\frac{d}{d\rho} = \alpha\frac{d}{d\rho}$


$\displaystyle \frac{\alpha^2}{\rho^2} \alpha \frac{d}{d\rho} \left(
\frac{\rho^...
...[ \frac{\lambda}{\rho} - \frac{1}{4} -
\frac{l(l+1)-\gamma^2}{\rho^2} \right] R$ $\textstyle =$ $\displaystyle 0 ,$  
$\displaystyle \frac{1}{\rho^2} \frac{d}{d\rho} \left( \rho^2\frac{dR}{d\rho} \r...
...[ \frac{\lambda}{\rho} - \frac{1}{4} -
\frac{l(l+1)-\gamma^2}{\rho^2} \right] R$ $\textstyle =$ $\displaystyle 0 .$ (4.168)

This radial equation is the same as in the nonrelativistic case if $l(l+1)\rightarrow l(l+1) - \gamma^2$. Solving for $E$ we have


$\displaystyle \frac{E^2-m^2c^4}{\hbar^2c^2}$ $\textstyle =$ $\displaystyle -\frac{1}{4} \left(
\frac{2E\gamma}{\hbar c\lambda} \right)^2$  
$\displaystyle E^2 - m^2c^4$ $\textstyle =$ $\displaystyle -\frac{E^2\gamma^2}{\lambda^2}$  
$\displaystyle E^2\left(1+\frac{\gamma^2}{\lambda^2}\right)$ $\textstyle =$ $\displaystyle m^2c^4$  
$\displaystyle E$ $\textstyle =$ $\displaystyle mc^2\left( 1 + \frac{\gamma^2}{\lambda^2} \right)^{-1/2} .$ (4.169)

The parameter $\lambda$ is determined by the boundary condition on $R$ when $\rho = \infty$.

The remainder of this problem is left as an exersize for the student.


next up previous contents index
Next: Homogeneous Green Function Up: Klein-Gordon Equation Previous: Klein Paradox for Spin-0
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18