next up previous contents index
Next: Working Rules for Lorentz Up: Lorentz Covariance Previous: Lorentz Group

Lorentz Boost

The energy and momentum $(E^\prime,\vec{p}^\prime)$ viewed from a frame moving with velocity $\vec{\beta} \equiv \vec{v}/c$ is give by


\begin{displaymath}
\left( \begin{array}{c}
E^\prime \\ p_{\vert\vert}^\prime
\...
...t}
\end{array}\right)\quad\textrm{and}\quad p_T^\prime = p_T ,
\end{displaymath} (3.16)

where $\gamma = (1 - \beta^2)^{-1/2}$, and $p_T$ and $p_{\vert\vert}$ are the components of $\vec{p}$ perpendicular and parallel to $\vec{\beta}$, respectively.

Since $\beta$ and $\gamma$ are related, we can define a single ``rapidity'' parameter, $\omega$, as


\begin{displaymath}
\beta \equiv \tanh\omega .
\end{displaymath} (3.17)

Using the properties of the hyperbolic functions we have


\begin{displaymath}
\gamma = \cosh\omega \quad\textrm{and}\quad \gamma\beta = \sinh\omega .
\end{displaymath} (3.18)

We can thus write


$\displaystyle \left( \begin{array}{c}
E^\prime \\  p_{\vert\vert}^\prime
\end{array}\right)$ $\textstyle =$ $\displaystyle \left( \begin{array}{rr}
\cosh\omega & -\sinh\omega \\
-\sinh\om...
...d{array}\right)
\left( \begin{array}{c}
E \\  p_{\vert\vert}
\end{array}\right)$  
  $\textstyle =$ $\displaystyle \cosh\omega \left( \begin{array}{cc}
1 & -\tanh\omega \\
-\tanh\...
...array}\right)
\left( \begin{array}{c}
E \\  p_{\vert\vert}
\end{array}\right) .$ (3.19)

Other 4-vectors, such as the space-time coordinates of events transform in the same way.

We see that the Lorentz transformation may be regarded as a rotation through an imaginary angle $i\omega$ in the $ict$-$z$ plane.


next up previous contents index
Next: Working Rules for Lorentz Up: Lorentz Covariance Previous: Lorentz Group
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18