next up previous contents index
Next: Lorentz Covariance Up: Notation and Conventions Previous: Useful Definitions

Problems

  1. Using the explicit forms for the $2\times 2$ Pauli matrices, verify the commutation (square brackets) and anti-commutation (braces) relations


    \begin{displaymath}
\left[ \sigma_i, \sigma_j \right] = 2i \epsilon_{ijk} \sigma...
... \quad
\left\{ \sigma_i, \sigma_j \right\} = 2 \delta_{ij} I ,
\end{displaymath}

    where $I$ is the $2\times 2$ unit matrix. Hence show that


    \begin{displaymath}
\sigma_i \sigma_j = \delta_{ij} I + i\epsilon_{ijk} \sigma_k .
\end{displaymath}

  2. Use the proven identity in the previously question to prove the result


    \begin{displaymath}
(\vec{\sigma} \cdot \vec{a}) (\vec{\sigma} \cdot \vec{b}) = ...
...\cdot \vec{b} I + i\vec{\sigma} \cdot \vec{a} \times \vec{b} .
\end{displaymath}

    Using the explicit $2\times 2$ form for


    \begin{displaymath}
\vec{\sigma} \cdot \vec{p} = \left( \begin{array}{cc} p_z & p_x-ip_y \\
p_x+ip_y & -p_z \end{array} \right) ,
\end{displaymath}

    show that


    \begin{displaymath}
(\vec{\sigma} \cdot \vec{p})^2 = \vec{p}^{\ 2} I .
\end{displaymath}



Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18