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a b s t r a c t

By utilizing condition monitoring information collected fromwind turbine components, condition based
maintenance (CBM) strategy can be used to reduce the operation and maintenance costs of wind power
generation systems. The existing CBM methods for wind power generation systems deal with wind
turbine components separately, that is, maintenance decisions are made on individual components,
rather than the whole system. However, a wind farm generally consists of multiple wind turbines, and
each wind turbine has multiple components including main bearing, gearbox, generator, etc. There are
economic dependencies among wind turbines and their components. That is, once a maintenance team is
sent to the wind farm, it may be more economical to take the opportunity to maintain multiple turbines,
and when a turbine is stopped for maintenance, it may be more cost-effective to simultaneously replace
multiple components which show relatively high risks. In this paper, we develop an optimal CBM
solution to the above-mentioned issues. The proposed maintenance policy is defined by two failure
probability threshold values at the wind turbine level. Based on the condition monitoring and prog-
nostics information, the failure probability values at the component and the turbine levels can be
calculated, and the optimal CBM decisions can be made accordingly. A simulation method is developed to
evaluate the cost of the CBM policy. A numerical example is provided to illustrate the proposed CBM
approach. A comparative study based on commonly used constant-interval maintenance policy
demonstrates the advantage of the proposed CBM approach in reducing the maintenance cost.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Maintenance management for wind power generation systems
aims at reducing the overall maintenance cost and improving the
availability of the systems. Since the operation and maintenance
costs represent a substantial portion of the total life cycle costs of
wind power generation systems [1], reliability and maintenance
management of wind turbines have drawn increasing interests for
the reduction of these costs [2e5]. The existing maintenance
methods for wind energy systems can be classified into corrective
maintenance, preventive maintenance (PM) and condition based
maintenance (CBM) [6]. PM can be further divided into time-based
and usage-based maintenance depending on the trigger mecha-
nism. In time-based maintenance, the maintenance activities are
routinely carried out based on the predetermined time interval or
M, condition based mainte-
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the age of the components. If the wind turbine lifetime is measured
by usages such as the amount of energy produced, the maintenance
action is triggered once the system has generated a specified
amount of electricity. In many studies, though, the usage-based
maintenance can be treated as a special case of the time-based
maintenance in which the time is measured by the usage. Two
challenging issues are always involved in PM: under-maintenance
and over-maintenance. The former occurs when the system
performance is not appropriately monitored, resulting in unex-
pected failures. For the over-maintenance, we tend to schedule
excessive maintenance activities to prevent the unexpected down
events, resulting in the waste of resources.

CBM is an advanced maintenance strategy that is based on
performance and/or parameter monitoring and subsequent actions
[7].Maintenance decision is reached based on conditionmonitoring
data, such as vibration data, acoustic emission data, oil analysis data
and power voltage and current data, which are collected fromwind
turbine components [8,9]. In Refs. [10e12], Fourier transforms are
used as amajor signal processing technique formonitoring thewind
turbine health conditions, which turns out to be very promising in
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Nomenclature

Pt Life percentage obtained using artificial neural
network (ANN);

mp Mean of the ANN life percentage prediction error;
sp Standard deviation of the ANN life percentage

prediction error;
Tp The predicted failure time;
N The number of wind turbines in a wind farm;
M The number of critical components considered in

a wind turbine;
Pr Failure probability;
Prn,m The failureprobabilityof componentm inwind turbinen;
Prn The failure probability of wind turbine n;
t The age of a general component at the current

inspection point;
L The maintenance lead time;
d1 Level 1 failure probability threshold value;
d2 Level 2 failure probability threshold value;
CE The total expected maintenance cost per unit time;
mp,m Mean value of the ANN life percentage prediction error

for component m;
sp,m Standard deviation of the ANN life percentage

prediction error for component m;
am Weibull distribution scale parameter for componentm;
bm Weibull distribution shape parameter for componentm;
TMax The maximum simulation time;
TI The inspection interval;
cf,m The failure replacement cost for component m;

cp,m The variable preventive replacement cost for
component m;

cp,T The fixed cost of maintaining a wind turbine;
cFarm The fixed cost of sending a maintenance team to the

wind farm;
CT The total maintenance cost;
tABS The current time in the simulation;
TLn,m The real failure time for component m in turbine n;
tn,m The current age of component m in turbine n;
TPn,m The predicted failure time for component m in turbine

n using ANN;
IFn,m Indicating whether a failure replacement being

performed on component m in turbine n;
IPn,m Indicating whether a preventive replacement being

performed on component m in turbine n;
ITn Indicating whether a preventive replacement being

performed on turbine n;
IFarm Indicating whether a maintenance team being sent to

the wind farm;
tCI The maintenance interval in the constant-interval

maintenance policy;
CCI
p;m The total cost of a failure replacement for component

m in the constant-interval maintenance policy;
CCI
f ;m The total cost of a preventive replacement for

component m in the constant-interval maintenance
policy;

Hm (tCI) The expected number of failures for component m in
interval (0,tCI).
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dealing with stationary degradation signals. In reality, signals from
wind turbines are often non-stationary as largewind turbines often
operate at variable speeds. The wavelet transform seems more
appropriate inhandlingnon-stationary signals [13]. In Ref. [14], a life
cycle cost approach is adopted to evaluate thefinancial benefit using
conditionmonitoring system, a tool for implementingCBMpolicy. In
Ref. [15] a multi-state Markov decision process is used to estimate
the wind turbine degradation process based on which the optimal
maintenance scheme is devised.

By leveraging condition monitoring information, CBM is
expected to reduce the operation and maintenance costs of wind
power generation systems. Existing CBM methods for wind power
generation systems deal with wind turbine components separately,
that is, maintenance decisions are made on individual components,
rather than the whole system [16]. However, wind farms are often
located in remote areas or off-shore sites. Each wind farm consists
of multiple wind turbines, and each wind turbine has multiple
components includingmain bearing, gearbox, generator, shafts, etc.
Obviously, there are economic dependencies among wind turbines
and their components. That is, once a maintenance team is sent to
the wind farm, it may be more economical to take the opportunity
to maintain multiple turbines. If a turbine is stopped for mainte-
nance, it may be more economical to replace or repair multiple
components which have shown high risks of failures.

In this paper, a CBM policy is developed to address the above-
mentioned issues. The proposed policy is defined by two failure
probability thresholds at the wind turbine level. Based on the
condition monitoring information, decisions can be made on
whether a maintenance team should be sent to the wind farm,
which turbines should be maintained and which components
should be maintained. A simulation method will be presented for
evaluating the cost of the proposed CBM policy. Numerical exam-
ples will be used to illustrate the proposed approach, and
comparisons to commonly used PM policies will be provided to
demonstrate the advantage of the proposed CBM approach.

2. Component health condition prognostics

The objective of health condition prognostics is to predict the
equipment future health conditions as well as the remaining useful
life. At each inspection point, the condition monitoring measure-
ments are collected, and the health condition prognostics methods
canbeused to estimate the failure timevalueor the remaininguseful
life. Some prognostics methods are also capable of estimating the
associated prediction uncertainties. The health condition prediction
methods can be divided intomodel-basedmethods and data-driven
methods. The model-based methods, also known as the physics-of-
failure methods, perform reliability prognostics using equipment
physical models and damage propagation models. Model-based
prognostics methods have been reported for analyzing component
reliability such as bearings (Marble et al. [17]) and gearboxes
(Kacprzynski et al. [18], Li and Lee [19]). The key limitation of the
model-based methods is that for some components or systems,
authentic physics-of-failure models are very difficult to build
because equipment damage propagation processes and dynamic
responses are very complex. Data-driven methods directly utilize
the collected condition monitoring data for health condition
prediction, and do not require physics-of-failure models. Examples
of the data-drivenmethods include the proportional hazardsmodel
developed by Banjevic et al. [20], the Bayesian prognostics methods
[21], and the ANN based prognostics methods [22,23].

Outputs of the prognostics methods are the predicted failure time
and the associated uncertainty. That is, at a certain inspection point,
the predicted failure time distribution can be obtained for the
component being monitored. Among various data-driven methods,
ANN based methods have been shown very effective and flexible for
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prognosing componenthealth condition. In thiswork,weuse theANN
prediction approach developed in Ref. [23]. The ANN model used in
thisapproachis showninFig.1,which isa feed forwardneuralnetwork
model with one input layer, two hidden layers and one output layer.
The inputs of theANNare the component agevalues and the condition
monitoring measurements at the current and previous inspection
points. The number of condition monitoring measurements used in
theANNmodeldependson the specificproblem. In theexampleof the
ANN model shown in Fig. 1, there are two condition monitoring
measurements. Specifically, ti is the age of the component at the
current inspectionpoint i, and ti�1 is the age at theprevious inspection
point i�1. z1i and z1i�1are values of measurement 1 at the current and
previous inspectionpoints, and z2i and z2i�1 are values ofmeasurement
2 at the current andprevious inspectionpoints. The outputof theANN
model is the life percentage at current inspection time, denoted by Pi.
For example, if the failure timeof a component is 850 days and the age
of the component at the current inspection point is 500 days, the life
percentage value would be Pi ¼ 500=850� 100% ¼ 58:82%.

The ANN model utilizes failure histories as well as suspension
histories. A failure history of a unit refers to the period from the
beginning of the component life to the end of its life, a failure, and
the inspection data collected during this period. In a suspension
history, though, the unit is taken out of service before the failure
occurs. Once trained, the ANN prediction model can be used to
predict the remaining life based on the component age and the
condition monitoring measurements. As mentioned above, the
output of the ANN model is life percentage, based on which
the predicted failure time can be calculated. For example, at
a certain inspection point, if the age of the component is 400 days
and the life percentage predicted using ANN is 80%, the predicted
failure time would be 400/80%¼ 500 days.

To obtain the predicted failure time distribution, reference [25]
developed a method to calculate the standard deviation of the
predicted failure time. The basic idea is that the ANN life percentage
prediction errors can be obtained during the ANN training and
testing processes, based on which the mean, mp, and standard
deviation, sp, of the ANN life percentage prediction error can be
estimated. These values can be used to build the predicted failure
time distribution at a certain inspection point. Suppose the
component age is t and the ANN life percentage output is Pt, then
the predicted failure time will be t=ðPt � mpÞ, and the standard
deviation of the predicted failure time will be sp$t=ðPt � mpÞ. That
is, the predicted failure time Tp at the current inspection point
follows the normal distribution as [25]:

TpwN
�
t
.�

Pt � mp

�
; sp$t

.�
Pt � mp

��
(1)

It is assumed that the ANN life percentage prediction errors
follow normal distribution, and due to this assumption, the pre-
dicted failure time at a certain inspection point also follows normal
distribution. It is also assumed in Ref. [25] that the standard devi-
ation of the ANN life percentage prediction errors is constant and
does not change over time.
3. The proposed CBM approach for wind power generation
systems

In this section, a CBM policy for wind power generation systems
is proposed, and a simulation method for the cost evaluation of the
proposed CBM policy is developed. Without loss of generality,
suppose there are N wind turbines in the wind farm, and each
turbine hasM critical components. In thiswork, it is assumed that all
thewind turbinesunder consideration are identical.Wealso assume
that the degradation process of one wind turbine component does
not affect those of other components and other wind turbines.
3.1. Failure probability estimation at the component and turbine
levels

At the turbine component level, conditionmonitoring data, such
as vibration data and acoustic emission data, can be collected, and
failure time distribution can be predicted for each component using
the prognostics methods presented in Section 2. It is assumed that
the predicted failure time follows the normal distribution, as dis-
cussed in Section 2. The failure probabilities for the wind turbine
components, whichwill be defined later, can be calculated based on
the predicted failure time distributions. Therefore the CBM deci-
sions will be made based on the failure probabilities. The failure
probability for a general component is defined as follows [25]:
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where, L is the maintenance lead time, which is defined as the
interval between the time maintenance decision is made and the
time when the maintenance is performed. Notice that t is the age
of the component at the current inspection point, tp is the pre-
dicted failure time using ANN, and s is the standard deviation of
the predicted failure time distribution. The failure probability for
component m in turbine n is denoted by Prn,m. Based on the
discussions in Section 2, we can obtain the following
relationships:

tp ¼ t
.�

Pt � mp

�
; s ¼ sp$t

.�
Pt � mp

�
: (3)

The lead time, L, consists of the time required to assemble the
maintenance team, order the spare parts, prepare the repair
equipment, and travel to the wind farm, etc. Thus, the maintenance
decisions made at the current inspection point can affect the wind
turbines only when the lead time has passed, and we have no
influence on the failures during the lead time. So, it is reasonable to
decide an optimal maintenance based on the probabilities of fail-
ures occurring during the lead time in order to reduce the failure
risks. To reasonably simplify the problem, we assume L is the same
for all maintenance actions in this study.

If the critical turbine components are considered, the wind
turbine can be treated as a series system connected by rotor, main
bearing, gearbox, generator, etc. That is, a failure of any component
will lead to the systemmalfunction. Thus, the failure probability for
wind turbine n during the lead time L can be expressed as follows:

Prn ¼ 1�
YM
m¼1

�
1� Prn;m

�
(4)
3.2. The proposed CBM policy

For the purpose of simplifying the descriptions, we use
replacement to refer to a maintenance action, such as the
replacement of the main bearing, or the replacement of a faulty
gear within the gearbox. Suppose wind turbine components are
continuously monitored. Maintenance decisions are made based on
the failure probabilities of the components and the wind turbines,
which can be calculated based on the component health condition
data and prognostics information.

The proposed CBM policy for the wind power generation
systems is summarized as follows:



Fig. 1. Structure of the ANN model for component health condition prediction [23].
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(1) Perform failure replacement if a component fails. The mainte-
nance equipment and replacement parts will be scheduled, and
the maintenance team will be sent to the wind farm.

(2) Send a maintenance team to the wind farm and perform
preventive replacements if any wind turbine in the wind farm
is determined to be maintained.

(3) Perform preventive replacements on components in wind
turbine n if Prn> d1, where Prn is the failure probability of the
wind turbine n, and d1 is the pre-specified level 1 failure
probability threshold value.

(4) If turbine n is to be performed preventive replacement on,
perform preventive replacement on its components in order to
bring the turbine failure probability below d2, and d2 is called
the level 2 failure probability threshold.

As can be seen, once the two failure probability threshold
values, d1 and d2, are specified, the CBM policy is determined.

3.3. CBM optimization model and solution method

Based on the above CBM policy, the CBM optimization model
can be simply formulated as follows:

min CEðd1;d2Þ
s:t:

0 < d2 < d1 < 1
(5)

where CE is the total expectedmaintenance cost per unit time under
a certain CBMpolicy definedby the two failure probability threshold
values d1 and d2. These thresholds take real values between 0 and 1,
and d2< d1. The objective of the CBM optimization is to find the
optimal d1 and d2 such that the totalmaintenance cost isminimized.

Before performing the search of the optimization, we need to
calculate the cost value CE given two failure probability threshold
values d1 and d2. Due to the complexity of the problem, it is very
difficult to develop a numerical algorithm to evaluate the cost of the
CBM policy for the wind power generation systems. In this paper,
we present a simulation method for the cost evaluation. The flow
chart for the procedure of the simulation method is presented in
Fig. 2, and detailed explanations of the procedure are given in the
following paragraphs.

3.3.1. Step 1
Building the ANN predictionmodel. For each type of wind turbine

component, determine the lifetime distribution based on the
available failure and suspension data. Weibull distributions are
assumed to be appropriate for components lifetime, and the distri-
butionparametersamandbm canbeestimated foreachcomponentm.
For each type of component, based on the available failure and
suspensionhistories, anANNpredictionmodel canbetrained, and the
mean and standard deviation of the ANN life percentage prediction
error, denoted by mp,m and sp,m, can be calculated.

3.3.2. Step 2
Simulation initialization. As mentioned earlier, suppose there

are N wind turbines in the wind farm, and M critical components
are considered for each turbine. Specify the maximum simulation
time TMax, and the inspection interval TI. TI can be set to be a small
value, say 1 day, so that we can approximately achieve continuous
monitoring. Or we can set TI to be a larger value, say 10 days, to
improve the computation efficiency, yet still obtain an accurate
result. For each componentm, specify the cost values, including the
failure replacement cost cf,m and the variable preventive replace-
ment cost cp,m. The fixed cost of maintaining a certainwind turbine,
cp,T, and the fixed cost of sending a maintenance team to the wind
farm, cFarm, also need to be specified. The total replacement cost is
set to be CT¼ 0, and will be updated during the simulation. Set
tABS¼ 0, and generate the real failure times for each component in
each turbine. That is, for component m in turbine n, generate a real
failure time TLn,m by sampling the Weibull distribution for
component m with parameters am and bm. Thus, at time 0, the age
values for all the components are 0, that is, tn,m¼ 0 for all n and m.

3.3.3. Step 3
Component health condition prognostics and failure probability

calculation. At a certain inspection point when the time tABS> 0, the
age of component m in turbine n is represented by tn,m, and its real
failure time is known at this point, which is TLn,m. For each
component, generate the predicted failure time, TPn,m, by sampling
the normal distribution NðTLn;m; sp$TLn;mÞ. Based on the discussion
in Section 2, the predicted failure time distribution can be obtained
as NðTPn;m; sp$TPn;mÞ. Now, based on Equation (2), the current
failure probability during the lead time for the component is:

Prn;m ¼

Ztn;mþL

tn;m

1
spTPn;m

ffiffiffiffiffiffi
2p

p e
�1

2

�
x�TPn;m
spTPn;m

�2

dx

ZN
tn;m

1
spTPn;m

ffiffiffiffiffiffi
2p

p e
�1

2

�
x�TPn;m
spTPn;m

�2

dx

(6)

Finally, the failure probability for each turbine can be calculated
using Equation (4) based on the failure probabilities of its
components.

3.3.4. Step 4
CBM decision making and cost update. At the current inspection

point tABS, the CBM decisions can be made according to the CBM
policy, described in Section 3.2, based on the failure probabilities of
the turbines and their components:

(1) If tn,m� TLn,m, it implies that a component failure occurred. A
failure replacement needs to be performed on the component,
and the failure replacement cost is incurred. The change in the
total cost due to failure replacements is:

DCT ;F ¼
XN XM

IFn;mcf ;m: (7)

n¼1 m¼1



Table 1
Weibull failure time distribution parameters for major components.

Component Scale parameter a (days) Shape parameter b

Rotor 3000 3.0
Main bearing 3750 2.0
Gearbox 2400 3.0
Generator 3300 2

Fig. 2. Flow chart for the proposed simulation method for cost evaluation.
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where IFn,m¼ 1 if a failure replacement is to be performed on the
component, and it equals 0 otherwise.

(2) For wind turbine n, if Prn> d1, perform preventive replace-
ments on its components with higher failure probabilities until
the turbine failure probability is lower than level 2 threshold
value d2. If preventive replacement is performed on component
m, the preventive replacement costs are incurred. Thus, the
change in the total cost due to preventive replacements is:

DCT ;P ¼
XN  XM

IPn;mcp;m þ ITncp;T

!
: (8)
n¼1 m¼1

where IPn,m¼ 1 if a preventive replacement is to be performed on the
component, and it equals 0 otherwise. ITn¼ 1 if preventive replace-
ments are performed on components in turbine n, but no failure
replacementsareperformedonthe turbine, and itequals0otherwise.
Fig. 3. Key wind turbine components considered in the example [26].
(3) If a failure replacement or preventive replacement is to be per-
formed on any component in the wind farm, the fixed cost of
sending a maintenance team to the wind farm, cFarm, will be
incurred:

DCT;Farm ¼ IFarmcFarm: (9)
where IFarm¼ 1 if cFarm is incurred, and otherwise it equals 0. Thus,
the change in the total replacement cost at the current inspection
point is:

DCT ¼ DCT ;F þ DCT ;P þ DCT ;Farm (10)

(4) At the current inspection point, if any replacement is to be
performed, the time will be moved to the point when the
maintenance lead time has passed, i.e.,

tABS ¼ tABS þ L: (11)

Otherwise, we will move the next inspection point:
tABS ¼ tABS þ TI : (12)

At the new inspection point, if a failure replacement or
preventive replacement has been decided to be performed on
componentm in turbine n, generate a new real failure time TLn,m by
sampling the Weibull distribution for component m with parame-
ters am and bm. If the current time tABS has not exceeded the
maximum simulation time TMax, repeat Step 3 and Step 4.

3.3.5. Step 5
Total replacement cost calculation. When the maximum simu-

lation time is reached, that is, tABS¼ TMax, the simulation process is
completed. The total replacement cost for the wind farm can be
calculated as:

CE ¼ CT
TMax

: (13)

And the total replacement cost for each turbine is:

CET ¼ CT
N$TMax

: (14)

It should be noted that the cost measure of the maintenance
policy is cost per unit of time, that is, $/day or $/year. This cost
Table 2
Failure replacement and preventive maintenance costs for major components.

Component Failure
replacement
cost
($1000)

Variable
preventive
maintenance
cost
($1000)

Fixed preventive
maintenance
cost
($1000)

Fixed cost to
the wind farm
($1000)

Rotor 112 28
Main bearing 60 15 25 50
Gearbox 152 38
Generator 100 25
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Table 3
ANN life percentage prediction error standard deviation values
for major components.

Component Standard deviation

Rotor 0.12
Main bearing 0.10
Gearbox 0.12
Generator 0.10
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measure corresponds to annual cost in engineering economics. If
we are interested in other discounting related measures, such as
the net present value (NPV), for a certain period of time, they can be
calculated based on the annual value [24].
Fig. 5. Cost versus threshold d1 in the logarithm scale (d2¼ 3.4145�10�6).

4. An example

4.1. Maintenance optimization using the proposed CBM approach

In this section, an example is used to demonstrate the proposed
CBM approach for wind power generation systems. Consider
a group of 5 wind turbines, produced and maintained by a certain
manufacturer, in a wind farm at a remote site. To simplify our
discussion, in this example, we study 4 key components in each
wind turbine: the rotor (including the blades), the main bearing,
the gearbox and the generator, as shown in Fig. 3 [26].

Assume the Weibull distributions are appropriate to describe
the component failure times, and the Weibull parameters are given
in Table 1. The component lifetime distribution parameters are
specified based on the data given in Ref. [27] and [28]. The cost data
are given in Table 2, including the failure replacement costs for the
components, the fixed and variable preventive replacement costs
and the cost of sending a maintenance team to the wind farm. The
cost data are specified based on the cost related data given in
Ref. [1] and [29]. The ANN prediction method is used to predict the
failure time distributions of the wind turbine components, and
suppose the standard deviations of the ANN life percentage
prediction errors are 0.12, 0.10, 0.10, and 0.12, respectively, as
shown in Table 3. The standard deviation values are selected by
referring to that estimated using the bearing degradation data in
Ref [25] and [30]. The maintenance lead time is assumed to be 30
days, and the inspection interval is set at 10 days.

The total maintenance cost can be evaluated using the proposed
simulation method presented in Section 3.3. The cost versus failure
-4
-3

-2
-1

0

-30
-20

-10
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Fig. 4. Cost versus failure probability threshold values in the logarithm scale.
probability threshold values plot is given in Fig. 4, where the failure
probability threshold values are given in the logarithm scale. It is
found that the total maintenance cost is affected by the two failure
probability threshold values, and the optimal CBM policy exists
which corresponds to the lowest cost. Optimization is performed,
and the optimal CBM policy with respect to the lowest total
maintenance cost can be obtained. The obtained optimal threshold
failure probability values are: d1¼0.1585, d2 ¼ 3.4145�10�6, and
the optimal expected maintenance cost per unit of time is 577.08
$/day. Fig. 5 shows the cost versus d1 plot while d2 is kept at
3.4145�10�6, and the cost versus d2 plot while d1 is kept at 0.1585
is presented in Fig. 6. These two figures can more clearly show the
change in the maintenance cost with respect to one of the failure
probability threshold value around the optimal point.

4.2. Comparative study with the time-based maintenance policies

There are mainly two types of time-basedmaintenance policies:
the constant-interval maintenance policy and the age-based
maintenance policy. The former is also called block replacement
policy. Under constant-interval maintenance, if a component fails,
a failure replacement will be performed right away. Preventive
replacements will be performed on components at constant
intervals, say every 3 months. In age-based maintenance, a failure
replacement will also be performed right away if a component fails,
and a preventive replacement is performed once the age of
the component reaches a pre-specified age value. The age of the
component is reset to 0 once a replacement is performed. For the
wind power generation systems, there are significant fixed main-
tenance costs on the wind farm level and on the wind turbine level.
Thus, the age-based maintenance policy is not suitable for the wind
-25 -20 -15 -10 -5 0
500

600

700

800

900

Log(d2)

)yad/$(tso
C

Fig. 6. Cost versus threshold d2 in the logarithm scale (d1¼0.1585).



Table 4
Cost data for the constant-interval maintenance policy.

Component Failure
replacement
cost ($1000)

Preventive
replacement
cost ($1000)

Rotor 162 36.75
Main bearing 110 23.75
Gearbox 202 46.75
Generator 150 33.75
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power generation systems because these fixed maintenance costs
will be incurred whenever a preventive replacement is performed
on a component when the preventive replacement age is reached.
Currently, the constant-interval maintenance policy is the main-
tenance policy that is adopted the most inwind power industry [1].
So, we only investigate the constant-interval maintenance policy in
this comparative study.

In the constant-interval maintenance policy, tCI is used to denote
the maintenance interval. The objective of the maintenance opti-
mization is to find the optimal tCI value to minimize the expected
maintenance cost. Based on the discussion of the constant-interval
maintenance policy in Ref. [6], we can extend the method in Ref. [6]
and use the following equation to calculate the total expected
maintenance cost:

CðtCIÞ ¼ N$

PM
m¼1

�
CCI
p;m þ CCI

f ;mHmðtCIÞ
�

tCI
(15)

where CCI
p;m is the total cost of a failure replacement for component

m, and CCI
f ;m is the total cost of a preventive replacement for

component m. Hm (tCI) denotes the expected number of failures for
component m in interval (0,tCI), which can be evaluated using
a recursive procedure [6].

To ensure a fair comparison, for the constant-interval mainte-
nance policy, we use the same lifetime distributions for the
components, as given inTable 1.Wealso try to use the samecost data
in Table 2. Since the fixed cost on the farm level, cFarm, is incurred
whenever a failure replacement is performed, the failure replace-
ment cost in Equation (15) is equal to cFarm plus the failure replace-
ment cost in Table 2, as shown in Table 4. As to the preventive
replacement cost, the turbine level fixed cost in Table 2 is shared by
all the turbine components, and the wind farm level fixed cost is
shared by all the components in the wind farm. That is, the
preventive replacement cost for componentm can be calculated as:

CCI
f ;m ¼ cp;m þ cp;T=M þ cFarm=NM: (16)
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Fig. 7. Cost plot for the constant-interval based preventive maintenance policy.
The calculated preventive replacement cost data using Equation
(16) are also shown in Table 4.

Using Equation (15), the expected maintenance cost C(tCI) can be
calculated. The plot of the cost versus the preventive maintenance
interval tCI is shown in Fig. 7. As can be seen, an optimal preventive
maintenance interval with respect to the lowest cost exists. The
optimal constant-interval maintenance policy can be found using
a simple optimization procedure. The optimal preventive replace-
ment interval is found tobe1460days, and the correspondingoptimal
maintenance cost is 833.41 $/day. As presented in Section 4.1, using
the proposed CBM approach, the optimal expectedmaintenance cost
is577.08$/day. Thus, a cost savingof44.42% canbeachievedusing the
proposed CBM approach. The comparative study demonstrates that
the proposed CBM approach is more cost-effective comparing to the
widely used constant-interval maintenance policy.
5. Conclusions

In this paper, we proposed an optimal CBM policy to address the
maintenance ofwind farmswheremultiplewind turbine generators
are installed. The proposed maintenance policy is defined by two
failure probability thresholds at the wind turbine level. Leveraging
the condition monitoring data, prognostics tools are devised to
predict thedistributionof component failure times.Given the failure
probabilities for components and the system,optimal CBMdecisions
can be made on: 1) the maintenance schedule; 2) target wind
turbines to be maintained; and 3) key components to be inspected
and fixed. A simulation method has been developed to evaluate the
cost of the proposed CBM policy. Numerical examples and compar-
ative studies are presented to illustrate and examine the effective-
nessof theproposedapproach.Our futureeffortswill concentrateon
systems where dependent failures are involved or wind farms
employing heterogeneous turbines.
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