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Abstract - Accurate health prognosis is critical for ensuring equipment reliability and reducing 

the overall life-cycle costs. The existing gear prognosis methods are primarily either model-

based or data-driven. In this paper, an integrated prognostics method is developed for gear 

remaining life prediction, which utilizes both gear physical models and real-time condition 

monitoring data. The general prognosis framework for gears is proposed. The developed physical 

models include a gear finite element (FE) model for gear stress analysis, a gear dynamics model 

for dynamic load calculation, and a damage propagation model described using Paris’ law. A 

gear mesh stiffness computation method is developed based on the gear system potential energy, 

which results in more realistic curved crack propagation paths. Material uncertainty and model 

uncertainty are considered to account for the differences among different specific units that 

affect the damage propagation path. A Bayesian method is used to fuse the collected condition 

monitoring data to update the distributions of the uncertainty factors for the current specific unit 
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being monitored, and to achieve the updated remaining useful life prediction. An example is used 

to demonstrate the effectiveness of the proposed method.  

 

 

Notation    List 
 

𝑎        crack length 

𝑚, 𝐶   material parameters in Paris’ law 

𝑁        loading cycles 

∆𝐾      stress intensity factor range 

𝐾𝐼      mode I stress intensity factor 

𝐾𝐼𝐼     mode II stress intensity factor 

𝐿        edge length of triangular singular element  

𝐸       Young’s modulus 

𝜈        Poisson’s ratio 

𝑢        nodal displacement in 𝑥 direction 

𝑣        nodal displacement in 𝑦 direction 

𝜃  crack extension angle 

r ratio of mode I and mode II stress intensity factors  

𝐹       dynamic tooth load 

𝐹𝑎       horizontal force component  

𝐹𝑏      vertical force component 

𝑘𝑡      total mesh stiffness 

𝑘ℎ      Hertzian mesh stiffness 

𝑘𝑏      bending mesh stiffness 

𝑘𝑠       shear mesh stiffness 

𝑘𝑎       axial compressive mesh stiffness 

∆𝑎    crack length increment 

𝑊      pinion tooth width 
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𝛼1        force decomposition angle 

𝛼2        half of base tooth angle 

𝐺        shear modulus 

𝐼𝑥         area moment of inertia of the section 

𝐴𝑥     area of section 

휀       model uncertainty 

𝑒       measurement error 

𝜏       standard deviation of measurement error 

𝑎𝐶     critical crack length 

∆𝑁    incremental number of loading cycles 

𝜆∆𝑁   inspection interval 

𝐻      training set 

𝑅      test set 

𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)    prior distribution of 𝑚 

𝑙(𝑎|𝑚)        likelihood function in Bayesian inference 

𝑓𝑝𝑜𝑠𝑡(𝑚|𝑎)   posterior distribution of 𝑚 

𝒫  set of degradation paths  

 

Abbreviations:  

 

CBM: condition based maintenance 

PHM: prognostics and health management 

ANN: artificial neural network  

RUL: remaining useful life 

SIF: stress intensity factor 

FE: finite element 

HPSTC: highest point of single tooth contact 

 

 



4 

 

1. Introduction 

 

Accurate health prognosis is critical for ensuring equipment reliability and reducing the 

overall life-cycle costs, by taking full advantage of the useful life of the equipment. Prognostics 

is a critical part in the framework of condition based maintenance (CBM) or prognostics and 

health management (PHM) [1-2]. Condition monitoring data, such as vibration, acoustic 

emission, imaging and oil analysis data can be collected and utilized for equipment health 

monitoring and prediction. Gearbox is a basic component in machine systems, and it is used to 

transmit power and to change the velocity. Gears may suffer from various degradation and 

failure modes, such as crack, surface wear and corrosion, while crack at the gear tooth root is the 

most important failure mode [3], which is initiated due to repetitive stress. We focus on crack at 

the gear tooth root in this study.  

Existing gear prognosis methods can be roughly classified into model-based (or physics-

based) methods and data-driven methods [1-2]. The model-based methods predict the equipment 

health condition using component physical models, such as finite element (FE) models and 

damage propagation models based on damage mechanics, and generally do not use condition 

monitoring data in an integrated way [2]. Some model-based methods also require data to 

estimate the current damage status of the monitored component or system, but the condition 

monitoring data does not affect the physical model parameters, such as materials parameters. Li 

and Lee [4] proposed a gear prognosis approach based on FE modeling where the condition 

monitoring data is used to estimate the current crack length. Noticing the periodicity of the 

meshing stiffness, an embedded model was proposed to estimate the Fourier coefficients of the 

meshing stiffness expansion. Besides, the software DANST was used to calculate the dynamic 

load on cracked tooth at different crack lengths. The damage propagation model based on Paris’ 

law was used to predict crack propagation. Kacprzynski et al. [5] presented a gear prognosis tool 

using 3D gear FE modeling and considered various uncertainty factors in damage propagation, 

while the condition monitoring information is used to estimate the current crack length with 

uncertainty. Tian et al. [3] used gear dynamic simulation model and advanced signal processing 

tools for gear damage assessment. Marble et al. [6] developed a method for health condition 

prediction of propulsion system bearings based on a bearing spall propagation physical model 

and a FE model. For complex equipments, there are significant challenges in building authentic 
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physics-based models for describing the equipment dynamic response and damage propagation 

processes.   

Data-driven methods do not rely on physics based models, and only utilize the collected 

condition monitoring data for health prediction. The data-driven methods achieve health 

prognosis by modeling the relationship between equipment age, condition monitoring data, and 

equipment degradation and failure time, and training based on historical data is critical. Jardine 

et al developed the Proportional Hazards Model based methods for equipment prognosis and 

CBM [1, 7]. Artificial neural network based methods have been developed by Gebraeel et al. [8-

9], Lee et al. [10], Tian et al. [11], etc. Tian and Zuo [12] presented a gear health condition 

prediction approach using recurrent neural networks. Bayesian updating methods have been 

investigated in equipment prognostics for utilizing the real-time condition monitoring data [13-

14]. Data driven methods cannot take advantage of the degradation mechanism information in 

the physical models, and they are generally not very effective if sufficient data is not available.   

Integrated prognostics methods (or hybrid methods) have also been reported mainly in the 

field of health monitoring and prognosis for structures [27]. Integrated methods aim at fusing 

physical models and condition monitoring data, where condition monitoring data are used not 

just to estimate the current damage size, but mainly to update physical model parameters such as 

materials parameters c and m in the Paris’ Law. The particle filter based framework was 

developed by Orchard and Vachtsevanos [28-29] for the for failure prognosis of planetary carrier 

plate. Bayesian inference has been used to update model parameters based on condition 

monitoring data in several studies [15, 30]. 

In this paper, an integrated gear prognosis method is developed by utilizing both gear 

physical models and real-time condition monitoring data in an integrated way. The physical 

models include the FE model for gear stress analysis, the gear dynamics model for dynamic load 

calculation and the damage propagation model described using Paris’ law. Different units of the 

same type can have different failure times, and the internal reason behind it is that there are 

uncertainties such as materials uncertainty and model uncertainty. Thus, the objective of the 

integrated prognosis is to identify the distributions of the material and model uncertainties for the 

current specific unit being monitored by fusing the condition monitoring data. Such ideas have 

been investigated in damage propagation of structures [15], but the issue has not been studied for 

gears, which are rotating mechanical components where crack at the tooth root is the key failure 
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mode. To address this problem, we need to particularly develop the general integrated prognosis 

framework for gears, the FE model, and the method for fusing the condition monitoring data to 

update the model and to achieve the updated remaining useful life prediction. These are key 

contributions of this paper.  

For crack propagation computation in the gear physical models, the gear mesh stiffness is 

required. Tian et.al [25] developed a method based on the potential energy stored in the meshing 

gear system, considering Hertzian energy, bending energy, axial compressive energy and shear 

energy. However, the crack path was assumed to follow a straight line at a fixed angle with 

respect to the central line of tooth. In this work, we remove the assumption of straight crack path 

and develop a potential energy based method to calculate the mesh stiffness, which results in a 

more realistic curved crack propagation path. This is another key contribution of this work.  

The remainder of this paper is organized as follows. The gear physical models are presented 

in Section 2. The proposed integrated gear prognosis method is discussed in details in Section 3. 

Section 4 presents examples to demonstrate the procedure and effectiveness of the proposed 

prognosis approach. Conclusions are given in Section 5. 

 

 

2. Physical models of gears with crack 

 

Two types of physical models are used in this work for gear prognostics: a FE model and a 

damage propagation model. The FE model is used to analyze the stress particularly at gear tooth 

root. The damage propagation model, which is described using Paris’ law, is for describing the 

crack propagation over time.  

 

2.1 Finite element modeling for gear 

 

FE model is widely used for stress and strain analysis for solid structure and machine 

components when the domains of variables and loading condition are too complex to obtain an 

analytical solution. The FE models are built in various ways in the literature and related software 

packages provide an easy way for numerical simulation. The software, FRANC2D, was used for 

investigation of gear crack propagation problem in many publications because of its unique 
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feature, the capability of extending crack automatically [4-5]. Kacprzynski et al. [5] built a 3D 

FE model to analyze the crack propagation in gears.  

In this study, we consider spur gear which is a type of symmetric gear and for which the load 

in the gear face width is uniformly distributed. A 2D FE model is thus selected for less 

computation work. The software FRANC2D is used for building the gear FE model and for 

stress analysis. Initial crack is inserted at the position with the maximum bending stress, 

perpendicular to the profile. Then the crack will be propagated in the direction determined by the 

stress intensity factor (SIF). The applied loads on the tooth at different crack lengths are obtained 

by solving the dynamics equations of gear system. Plane strain condition is assumed. More 

details of the FE model used in this work will be given later in this paper.  

 

2.2 The damage propagation model 

 

The damage propagation model used in this study is for describing crack propagation in gear 

tooth over time. Most of the existing models are based on empirical Paris’ law [16], which 

identifies the relationship between crack growth rate and stress state. Apart from the range of SIF, 

Collipriest model [17] took three other factors into account, the effect of load ratio, instability 

near toughness property and stress intensity threshold factor. In order to deal with hardness of 

tooth layers, Inoue model [18] treated all the parameters as functions of hardness distribution. 

Experimental results of fatigue crack tests have shown that the crack propagation have three 

distinct regions. Paris’ law applies to the stable region where log-log plots of 
𝑑𝑎

𝑑𝑁
 versus ∆𝐾 is 

linear.  

In this paper, the basic Paris’ law is selected as damage propagation model given by 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚,                                                               (1) 

where 
𝑑𝑎

𝑑𝑁
 is crack growth rate, ∆𝐾 is the range of SIF, 𝐶 and 𝑚 are material dependent constants 

which are generally experimentally estimated by fitting fatigue test data. Due to variations in 

manufacturing and testing process as well as human factors, uncertainties exist in these 

parameters. These uncertainties are major causes of quite different failure times for different 

units of the same type of gear, even if they are used in the same environment. However, the 

material parameter of a specific gear unit may have a very narrow distribution or even 
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deterministic value. Once the distributions of the parameters for the specific unit are determined, 

much more accurate prediction can be obtained for the failure time. For the unit being monitored, 

the condition monitoring data is the unit-specific information that can be utilized to determine 

and update the parameter distributions for the specific unit. In this study, Bayesian inference will 

be used to update material parameter distributions every time crack length estimation is available 

through condition monitoring data.  

 

 

3. The Proposed Integrated Prognostics Method for Gears 

 

An integrated prognostics method is proposed in this paper, whose framework is shown in 

Fig. 1. There are basically two parts separated by a dashed line in the figure: the model based 

part on the left hand side, and the data-driven part on the right hand side. In the model-based part, 

the dynamic model of the gear system is used to determine the dynamic load. The crack at gear 

root will affect mesh stiffness greatly, and thus the dynamic load on that cracked tooth. It is 

necessary to account for the load change due to crack increase since the loading condition affects 

stress intensity factor to a large degree. Hence, a gear dynamic model is applied to calculate the 

dynamic load on gear tooth at different crack length. The calculated dynamic load is used in the 

gear FE model, and the output is the SIF at the crack tip. SIF as a function of crack length and 

loading is used in the crack propagation model, which is described by Paris’ law. With the 

current crack length, the failure time and the remaining useful life (RUL) distributions can be 

predicted by propagating the uncertainties in the materials parameters through the degradation 

model. In the data-driven part, crack evaluation model is used to estimate the crack length (with 

uncertainty) based on condition monitoring data. The current measured crack length can be used 

to update the distributions of the uncertainty factors, i.e., the materials parameters M and C and 

the model uncertainty, and thus to achieve more accurate RUL prediction based on the refined 

parameter and condition estimations for the specific unit. The Bayesian inference will be used in 

this work for this purpose. Details of the different parts of the approach will be discussed in the 

following subsections.    
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Fig. 1. Framework of the proposed integrated prognostic approach 

 

 

3.1 Gear stress analysis using FE model 

 

FE model described in Section 2.1 is used to calculate the stress intensity factor at crack tip, 

which is a key variable used in quantifying the gear crack propagation. The stress analysis is 

under the principle of linear elastic fracture mechanics theory. The method to calculate stress 

intensity factor is termed as displacement correlation method, which employs singular element to 

model stress singularity near crack tip. The said singular element is a type of finite element 

modified by positioning the point at quarter of element edge instead of middle point. It enables 

such element to exhibit 
1

√𝑟
 singularity along element edge and greatly improves accuracy and 

reduces the need for a high degree of mesh refinement at crack tip. The 6 nodes triangular 

singular element around the crack tip are shown in Fig. 2.  
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Fig. 2. Singular element [19] 

       

The displacement correlation method can be used to calculate the stress intensity factor using 

nodal displacements, as shown in the following formulas: 

𝐾𝐼 =
𝐸

2(1 + 𝜈)(𝜅 + 1)
√

2𝜋

𝐿
[4(𝑣𝑏 − 𝑣𝑑) + 𝑣𝑒 − 𝑣𝑐]                              (2) 

𝐾𝐼𝐼 =
𝐸

2(1 + 𝜈)(𝜅 + 1)
√

2𝜋

𝐿
[4(𝑢𝑏 − 𝑢𝑑) + 𝑢𝑒 − 𝑢𝑐]                            (3) 

where 𝐾𝐼 and 𝐾𝐼𝐼 are two types of SIF corresponding to two modes of crack. 𝐿 is element edge 

length, 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, 𝑢 and 𝑣 are nodal displacements and  

𝜅 = {
3 − 4𝜈  (plane strain)
3 − 𝜈

1 + 𝜈
   (plane stress).

                                             (4) 

The published results show that in crack propagation, 𝐾𝐼 is dominating over 𝐾𝐼𝐼 [20]. Hence, in 

Paris’ law for crack propagation shown in Eq. (1), only the range of 𝐾𝐼 is used. 

 

 

3.2 Gear dynamics model 

 

Most of the studies on the gear crack propagation problem considered constant static load on the 

meshing teeth. They investigated how the crack propagates under a fixed force on the tooth. 



11 

 

Their main work was to use the fracture model to analyze the stress and strain near the crack tip 

to determine the crack growth rate as well as the growth direction. Then the crack propagation 

model was used to estimate the life cycles until failure. Therefore, the entire crack path and the 

service life of the gear can  be obtained. However, the appearance of crack would reduce the 

stiffness of the tooth so that the load on the tooth will be affected by this reduction. The purpose 

of the gear dynamics model in this paper is similar to that in [4], which is to calculate the 

dynamic load on cracked tooth at different crack lengths. At each crack length, the maximum 

dynamic load is selected to be applied on the cracked tooth to drive the crack extension.   

   

3.2.1 Dynamic load  

 

As mentioned above, dynamic load on cracked tooth will change due to mesh stiffness 

change affected by crack occurrence. To calculate the dynamic load values at different crack 

length, a gear dynamic model with 6 degree-of-freedom is used in this paper. This mathematical 

model with torsional and lateral vibration was reported by Bartelmus [21]. We assume that all 

gears are perfectly mounted rigid bodies with ideal geometries. Inter-tooth friction is ignored 

here for simplicity. The governing motion equations are 

 

𝑚1𝑦1̈ = 𝐹𝑘 + 𝐹𝑐 − 𝐹𝑢 − 𝐹𝑢𝑐                                                           (5)  

𝑚2𝑦2̈ = 𝐹𝑘 + 𝐹𝑐 − 𝐹𝑙 − 𝐹𝑙𝑐                                                           (6) 

𝐼1𝜃1̈ = 𝑀𝑝𝑘 + 𝑀𝑝𝑐 − 𝑅𝑏1(𝐹𝑘 + 𝐹𝑐)                                                   (7) 

𝐼2𝜃2̈ = 𝑅𝑏2(𝐹𝑘 + 𝐹𝑐) − 𝑀𝑔𝑘 + 𝑀𝑔𝑐                                                    (8) 

𝐼𝑚𝜃�̈� = 𝑀1 − 𝑀𝑝𝑘 + 𝑀𝑝𝑐                                                           (9) 

𝐼𝑏𝜃�̈� = −𝑀2 − 𝑀𝑝𝑘 + 𝑀𝑝𝑐                                                      (10) 

𝐹𝑘 = 𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2)                                                (11) 

𝐹𝑐 = 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1 + 𝑦2)                                                (12) 

𝐹𝑢 = 𝑘1𝑦1                                                                      (13) 

𝐹𝑢𝑐 = 𝑐1𝑦1̇                                                                      (14) 

𝐹𝑙 = 𝑘2𝑦2                                                                      (15) 

𝐹𝑙𝑐 = 𝑐2𝑦2̇                                                                     (16) 
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𝑀𝑝𝑘 = 𝑘𝑝(𝜃𝑚 − 𝜃1)                                                             (17) 

𝑀𝑝𝑐 = 𝑐𝑝(𝜃�̇� − 𝜃1̇)                                                             (18) 

𝑀𝑔𝑘 = 𝑘𝑔(𝜃2 − 𝜃𝑏)                                                             (19) 

𝑀𝑔𝑐 = 𝑐𝑔(𝜃2̇ − 𝜃�̇�)                                                              (20) 

 

The assumptions and the parameter values for this system are adopted from [3] except for 

values of input motor torque and output load torque, because large load is needed to drive the 

crack to propagate quickly in failure test. The system is solved using Matlab’s ODE15s function.  

Let 𝛿 represent the backlash. The dynamic tooth load 𝐹 is calculated based on the formulas 

given by Lin et al. [22]. Here, the lateral displacements are added. 

Case (i)  𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 > 0, which is  the normal operating case: 

𝐹 = 𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇)          (21) 

 

Case (ii)  𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 ≤ 0  and  |𝑅𝑏1𝜃1 − 𝑅𝑏2 𝜃2 − 𝑦1 + 𝑦2| ≤ 𝛿 , where the 

gear pair will separate: 

𝐹 = 0                                                                      (22) 

Case (iii) 𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 < 0  and  |𝑅𝑏1𝜃1 − 𝑅𝑏2 𝜃2 − 𝑦1 + 𝑦2| > 𝛿 , where the 

gears will collide backside: 

𝐹 = 𝑘𝑡(𝑅𝑏2𝜃2 − 𝑅𝑏1𝜃1 − 𝑦2 + 𝑦1) + 𝑐𝑡(𝑅𝑏2𝜃2̇ − 𝑅𝑏1𝜃1̇ − 𝑦2̇ + 𝑦1̇)         (23)              

The dynamic load on tooth at contact point is the sum of stiffness inter-tooth force 𝑘𝑡(𝑅𝑏1𝜃1 −

𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) and damping inter-tooth force 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇).  Here 𝑘𝑡 is the 

meshing stiffness at contact point and 𝑐𝑡  is the mesh damping coefficient. Since both the 

torsional and lateral vibration are considered in this dynamic model, the effect of lateral vibration 

on relative gear tooth displacements as well as on velocities should be taken into account. In this 

study, the dynamic load 𝐹 in case (iii) is considered to be zero for simplicity.  

A crack in pinion root is inserted at the second tooth. Since mesh stiffness is affected directly 

by crack and it is the critical parameter to determine the dynamic load, the mesh stiffness for the 

cracked tooth in pinion during its meshing is calculated first.  

 

3.2.2  Total mesh stiffness calculation 
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Yang and Lin [24] proposed a method which used the potential energy stored in the meshing 

gear system to calculate the mesh stiffness between the meshing teeth. The energy includes 

Hertzian energy, bending energy and axial compressive energy. Tian et.al [25] improved this 

energy method by adding shear energy as well which affects the total mesh stiffness greatly. 

Meanwhile, the calculation of mesh stiffness using potential energy method for the gear with 

crack was given. The crack path was assumed to be straight at a fixed angle with respect to the 

central line of tooth. Furthermore, in [3, 26], the crack path was extended based on [25], say, 

when the crack reached to the central line, it would change the direction which was assumed to 

be exactly symmetric around the tooth’s central line so that the whole crack path could go 

through the entire tooth. However, according to the experimental results, the crack propagates in 

a curved line instead of a straight line due to the stress concentration at the tooth roots. The crack 

propagation direction should be determined by the stress status near the crack tip. To be more 

precise, under the principle of linear elastic mechanics theory, the two-dimensional crack 

extension angle is computed by the ratio of mode I and mode II stress intensity factor  𝑟 =
𝐾𝐼

𝐾𝐼𝐼
 , 

𝜃 = 2 arctan (
𝑟 ± √𝑟2 + 8

4
).                                             (24) 

In this paper, based on the method proposed in [25, 26], we remove the assumption of 

straight crack path and develop a potential energy method to calculate the mesh stiffness of 

meshing gear pair, of which one tooth can have a curved crack propagation path. This “curved” 

crack propagation path is formed by connecting a series of straight crack increments. Different 

from the straight crack assumption, the intersection angle, 𝛽, between the vertical line passing 

crack tip and the line connecting tooth root to crack tip varies. The meshing gear system in this 

study has a contact ratio between 1 and 2, thus at certain given time, there exist two meshing 

situations: single pair contact and double  pair contact. For these two types of contact duration, 

the total effective mesh stiffness can be expressed respectively as [25]:  

𝑘𝑡 =
1

1 𝑘ℎ⁄ +1 𝑘𝑏1+1 𝑘𝑠1+1 𝑘𝑎1+⁄ 1 𝑘𝑏2+⁄ 1 𝑘𝑠2+⁄ 1 𝑘𝑎2⁄⁄⁄
          (single pair contact)    (25)                              

𝑘𝑡 = ∑
1

1 𝑘ℎ,𝑗⁄ +1 𝑘𝑏1,𝑗+1 𝑘𝑠1,𝑗+1 𝑘𝑎1,𝑗+⁄ 1 𝑘𝑏2,𝑗+⁄ 1 𝑘𝑠2,𝑗+⁄ 1 𝑘𝑎2,𝑗⁄⁄⁄
  (double pair contact)   (26)2

𝑗=1                

where 𝑘ℎ, 𝑘𝑏 , 𝑘𝑠, 𝑘𝑎 represent the Hertzian, bending, shear and axial compressive mesh stiffness 

respectively. Besides, 𝑗 = 1 represents the first pair of meshing teeth and 𝑗 = 2 represents the 
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second pair. One crack is inserted at the pinion tooth root with initial length of 𝑎0, The procedure 

to calculate the tooth stiffness with a curved crack path is given as follows. 

As shown in Fig. 3, the crack increment at each crack extension step is set to ∆𝑎. The crack 

tip is denoted by 𝑇𝑖, where the index 𝑖 represents the crack propagation step. The crack length 

grows by ∆𝑎 in the direction determined by (24). Because the associated formulas to compute 

cracked tooth stiffness are related to four different cases, depending on the teeth meshing contact 

point and the crack tip position as well, in Fig. 3, the index of 𝑖 = 1, 2, 3, 4 only symbolizes the 

four mentioned typical cases, and it does not mean that there are only these four crack tips. 

According to [25], the Hertzian and axial compressive stiffness are not affected by crack 

occurrence while the bending stiffness and shearing stiffness will change after the crack is 

introduced. 

The base circle of pinion centers at 𝑂  with the radius of 𝑅𝑏1.  The contact point 𝐶  are 

travelling along the tooth profile 𝑆�̃� and the angle of 𝛼1is determined by the tangential line 

passing 𝐶. Since the force 𝐹 is applied at the contact point 𝐶, perpendicular to the tangential line, 

the angle 𝛼1  also serves as the force decomposition angle to the horizontal direction 𝐹𝑏 =

𝐹cos𝛼1 and vertical direction 𝐹𝑎 = 𝐹sin𝛼1. Additionally, the points 𝐺𝑖 represent the intersection 

points between the vertical line passing crack tip and the tooth profile. And 𝑍𝑖 are the pedals on 

base circle of tangential line passing 𝐺𝑖. Accordingly, 𝑔𝑖 is the distance from 𝐺𝑖 to the tooth root 

𝑆 and 𝛼𝑔𝑖 is the angle between 𝐺𝑖𝑍𝑖 and 𝑂𝑍𝑖. If the crack tip passes the central line, denote the 

symmetric point regarding to central line 𝑂𝑃 of 𝐺𝑖 as 𝐺𝑖′, and the associated 𝛼𝑔𝑖 is defined as the 

angle between 𝐺𝑖′𝑍𝑖 and 𝑂𝑍𝑖. Lastly, 𝛼2 represents the half of the base tooth angle. 

 



15 

 

 

Fig. 3 Cracked tooth model 

 

Based on the results in [25], the Hertzian stiffness, independent of the contact position, is 

given by 

𝑘ℎ =
𝜋𝐸𝑊

4(1 − 𝜈2)
                                                              (27) 

where 𝐸 is Young’s modulus, 𝑊 is tooth width and 𝜈 is the Poisson’s ratio. And the axial 

compressive stiffness is  

1

𝑘𝑎
= ∫

(𝛼2 − 𝛼)cos𝛼sin2𝛼1

2𝐸𝐿[sin𝛼 + (𝛼2 − 𝛼)cos𝛼]
d𝛼

𝛼2

−𝛼1

 .                                   (28) 

The bending energy stored in a meshing gear tooth, based on beam theory, can be obtained by  
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𝑈𝑏 = ∫
𝑀2

2𝐸𝐼𝑥
d𝑥 = ∫

[𝐹𝑏(𝑑 − 𝑥) − 𝐹𝑎ℎ]2

2𝐸𝐼𝑥

𝑑

0

𝑑

0

d𝑥  ,                             (29) 

and the shear energy is given by  

𝑈𝑠 = ∫
1.2𝐹𝑏

2

2𝐺𝐴𝑥
d𝑥

𝑑

0

                                                            (30) 

𝐺 =
𝐸

2(1 + 𝜈)
                                                                 (31) 

In the above formulas given in [24], 𝐺 is shear modulus. 𝐼𝑥 and 𝐴𝑥 represent the area moment 

of inertia of the section and the area of the section, where the distance from the tooth root is 𝑥. 

Essentially, the calculations of 𝐼𝑥  and 𝐴𝑥  at different crack tip positions at different contact 

points determine the existence of the four mentioned circumstances to calculate tooth stiffness of 

cracked tooth. These four cases for stiffness calculation of cracked tooth are addressed below. 

Let the distance between tooth root 𝑆 and 𝐺𝑖𝑇𝑖 be 𝑢𝑖 . As said before, the purpose of index of 

𝑖 = 1, 2, 3, 4 is to indicate the four cases, not meaning there are the only four crack tip locations. 

Case 1.  Crack tip = 𝑇1  (i.e., ℎ𝑐1 ≥ ℎ𝑟), 

  In this case,  

𝐼𝑥 =    {

1

12
(ℎ𝑐1 + ℎ𝑥)3𝑊,       if 𝑥 ≤ 𝑔1,

1

12
(2ℎ𝑥)3𝑊,              if 𝑥 > 𝑔1,

                                        (32) 

𝐴𝑥 = {
(ℎ𝑐1 + ℎ𝑥)𝑊,       if 𝑥 ≤ 𝑔1,
2ℎ𝑥𝑊,                    if 𝑥 > 𝑔1.

                                            (33) 

 Case 1.1.  Contact point is above 𝐺1 (i.e., 𝛼1 > 𝛼𝑔1) . 

         The bending mesh stiffness of the cracked tooth is  

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼𝑔1

d𝛼                          

+ ∫
3{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

2𝐸𝑊[sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3
d𝛼

−𝛼𝑔1

−𝛼1

 

(34) 

                The shear stiffness is  
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1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼𝑔1

d𝛼 

+ ∫
1.2(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼 + (𝛼2 − 𝛼)cos𝛼]
d𝛼

−𝛼𝑔1

−𝛼1

 

(35) 

 Case 1.2.  Contact point is below 𝐺1 (i.e., 𝛼1 ≤ 𝛼𝑔1) . 

               The bending stiffness and shear stiffness are given by  

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼               (36) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊 [sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼                         (37) 

 

Case 2.  Crack tip = 𝑇2  (i.e., ℎ𝑐2 < ℎ𝑟) 

        In this case, 

𝐼𝑥 =
1

12
(ℎ𝑐1 + ℎ𝑥)3𝑊  and  𝐴𝑥 = (ℎ𝑐2 + ℎ𝑥)𝑊                                 (38) 

        based on which, the bending stiffness and shear stiffness are obtained by  

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢2

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼   

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼2 −
𝑢2
𝑅𝑏1

+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼 

(39) 

Case 3. Crack tip = 𝑇3  (i.e., ℎ𝑐3 < ℎ𝑟) 

        In this case,  

𝐼𝑥 =
1

12
(ℎ𝑥 − ℎ𝑐3)3𝑊  and  𝐴𝑥 = (ℎ𝑥 − ℎ𝑐3)𝑊,                                  (40) 

       the bending and shear stiffness are 
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1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢3

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼                 (41) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[−
𝑢3
𝑅𝑏1

+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼                                 (42) 

Case 4. Crack tip =  𝑇4  (i.e., ℎ𝑐4 ≥ ℎ𝑟) 

         In this case, 

𝐼𝑥 =
1

12
(ℎ𝑥 − ℎ𝑐4)3𝑊  and  𝐴𝑥 = (ℎ𝑥 − ℎ𝑐4)𝑊.                                  (43) 

Case 4.1.  Contact point is above 𝐺4′ (i.e., 𝛼1 > 𝛼𝑔4) . 

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼𝑔4

d𝛼               (44) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼𝑔4

d𝛼                              (45) 

Case 4.2.  Contact point is below 𝐺4′ (i.e., 𝛼1 ≤ 𝛼𝑔4) . 

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼              (46) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼                              (47) 

So far we have obtained the formulas to calculate the bending stiffness and shear stiffness of 

cracked tooth at any crack tip position and any contact point. No matter what the crack shape is, 

as long as the crack tip position is identified, i.e., 𝑢𝑖 is known, these two types of stiffness could 

be derived by the above formulas. Plus the Hertzian stiffness in Eq. (27) and axial compressive 

stiffness in Eq. (28), the total effective mesh stiffness is ready to use in the set of dynamic 

equations.  

 

3.3 Uncertainty quantification in gear prognostics 

 

The objective of integrated gear health prognostics is to predict the remaining useful life 

from certain moment by fusing the physical models and the condition monitoring data. 
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Uncertainties exist in both the model-based part and the data-driven part of the proposed 

integrated prognostics approach, and the uncertainties are propagated to the predicted failure 

time and the RUL. That is, these uncertainties are the key causes of the predicted RUL 

distribution. The RUL uncertainty quantification is critical when using degradation model to 

obtain accurate prediction results. In this section, first we define three main uncertainty sources 

to be accounted for, and then Paris’ law is used to predict the remaining useful life at a given 

instant considering those uncertainties. Moreover, each time the new observation data is 

available, the prediction will be updated by adjusting the statistical properties of those 

uncertainties using Bayesian inference.  

 

3.3.1 Modeling of uncertainty sources 

 

In this study, three main uncertainty sources are considered when using degradation model 

for prediction, that is, material parameter uncertainty, model uncertainty and measurement 

uncertainty.  

When Paris’ law is applied to predict the remaining cycles until critical failure length, 

material parameters 𝑚  and 𝐶  are essential factors. The values of these two parameters are 

acquired by experiments in controlled environment. However, uncertainties due to variation in 

manufacturing, testing process, human factor and other unexpected errors still have great 

potential contributions to the variations in the values of 𝑚 and 𝐶. In most of the research work,  

𝑚 and log𝐶 are assumed to follow normal distributions. 

The degradation model in this paper adopts basic Paris’ law as crack propagation model 

without considering other possible parameters which may have impact on crack propagation, 

such as crack closure retard, fracture toughness, load ratio etc. Therefore, an error term is 

introduced to represent the difference between the results obtained by Paris’ law and the real 

observations, termed as model uncertainty and denoted by 휀. Considering the model uncertainty, 

the modified Paris’ law is written as:  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 휀                                                           (48) 

In addition, measurement error 𝑒 is also considered due to the errors resulting from sensor as 

well as crack estimation methods. In practical applications, the current crack length is generally 
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estimated indirectly based on the sensor data using certain damage estimation techniques, and 

thus there is uncertainty associated with the current crack length estimation. Here we assume 

measurement error, 𝑒 = 𝑎𝑟𝑒𝑎𝑙 − 𝑎𝑚𝑒𝑎, has the following distribution,  

𝑒~𝑁(0, 𝜏2 )                                                               (49) 

That is equally to say, the measured crack length, 𝑎𝑚𝑒𝑎, obeys normal distribution centered at 

𝑎𝑟𝑒𝑎𝑙 with 𝜏 as the standard deviation, 

𝑎𝑚𝑒𝑎~N (𝑎𝑟𝑒𝑎𝑙 , 𝜏2)                                                         (50) 

 

3.3.2 Remaining useful life prediction 

 

At a certain inspection point t, suppose that the measured crack length is 𝑎𝑡 and the current 

loading cycle is 𝑁𝑡. The crack will propagate according to the Paris’ law. When the critical crack 

length 𝑎𝐶 is reached, the gear is considered failed. Due to the material uncertainty and model 

uncertainty, we will be able to obtain the predicted failure time distribution.   

The Paris’ law can be written as follows in Eq. (51), where ∆𝐾 denotes the range of SIF, 

which can be obtained using FE analysis, as a function of crack length and loading, 

𝑑𝑁

𝑑𝑎
=

1

𝐶(∆𝐾(𝑎))𝑚휀
   .                                                       (51) 

Let the crack increment be ∆𝑎 = 𝑎𝑖+1 − 𝑎𝑖, 𝑖 = 𝑡, 𝑡 + 1, ⋯, then the number of remaining useful 

cycles experienced by the tooth from the current length 𝑎𝑡 until it reaches critical length 𝑎𝐶 can 

be calculated by discretizing Paris’ law as follows: 

∆𝑁𝑖+1 = 𝑁𝑖+1 − 𝑁𝑖 = ∆𝑎 [𝐶 (
∆𝐾(𝑎𝑖+1) + ∆𝐾(𝑎𝑖)

2
)

𝑚

휀]

−1

                 (52) 

The summation ∑(∆𝑁
𝑖
), 𝑖 = 𝑡, 𝑡 + 1, ⋯ until critical length 𝑎𝐶 is the total remaining cycles, or RUL. 

The entire failure time could be obtained by 𝑁𝑡 + ∑(∆𝑁
𝑖
), 𝑖 = 𝑡, 𝑡 + 1, ⋯ . Considering the 

uncertainties in materials properties and crack propagation model itself, there is uncertainty in 

the predicted RUL, as discussed before. Monte-Carlo simulation is employed to quantify the 

uncertainty in the predicted RUL. 
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3.3.3 Prediction updating using Bayesian method 

 

Different from model-based method which only counts on the physical models or use the 

data to estimate the severity of the fault, the proposed integrated approach in this paper also uses 

condition monitoring data to adjust the model parameters. The condition monitoring data 

contains specific information for a specific gear under specific environment. So each time a new 

crack length is estimated, we have the chance to adjust the physical model parameters for the 

current gear being monitored and to make the RUL prediction more accurate. From one aspect, 

the prediction will start at a new inspection time with more accurate model parameters. From the 

other aspect, as we know, even though for the whole gear population there exist perhaps widely 

distributed material parameter values, but for a specific gear, the distribution of these parameters 

should be much narrower or even close to deterministic values. Therefore, the new condition 

monitoring data provides opportunities to reduce the uncertainty in model parameters. In this 

paper, Bayesian inference is used to update the distributions of the model parameters at every 

inspection cycle. Consider for example a simplified case where we only update the distribution 

of parameter 𝑚 , while assuming that the other material parameter,C, is constant. The prior 

distribution for 𝑚 is 𝑓𝑝𝑟𝑖𝑜𝑟(𝑚) and the likelihood to detect the current measured crack length is 

𝑙(𝑎|𝑚). Thus, the formula to use Bayesian rule to obtain posterior distribution 𝑓𝑝𝑜𝑠𝑡(𝑚|𝑎) is: 

𝑓𝑝𝑜𝑠𝑡(𝑚|𝑎) =
𝑙(𝑎|𝑚)𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)

∫ 𝑙(𝑎|𝑚)𝑓𝑝𝑟𝑖𝑜𝑟(𝑚) 𝑑𝑚
                                           (53) 

 

At a given value of 𝑚, Paris’ law is used to propagate the crack from current measured crack 

length to the length measured at next inspection cycle. Because of the measurement error 𝑒 and 

model error 휀, there exists a sort of likelihood to observe a crack length at next inspection cycle, 

i.e., to obtain the estimated crack length. Because the updating is from the one inspection cycle 

to the next one, we assume the crack length at the current inspection cycle is 𝑎𝑐𝑢𝑟𝑟_𝑐𝑦𝑐𝑙𝑒 , 

incremental number of cycles is ∆𝑁 and after 𝜆∆𝑁 cycles, i.e., the inspection interval, it reaches 

to the length of 𝑎𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒. Use the following discretized Paris’ law to realize this extension from 

current inspection cycle to the next one,   

{
𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁))]

𝑚
휀, 𝑖 = 0, 1, 2, ⋯ , 𝜆 − 1  

𝑎(0) = 𝑎𝑐𝑢𝑟𝑟_𝑐𝑦𝑐𝑙𝑒

         (54) 
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So 𝑎𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒 = 𝑎(𝜆∆𝑁). Hence considering the measurement error, the measured crack length 

at next inspection cycle should follow the distribution of 

𝑎𝑚𝑒𝑎_𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒~N (𝑎𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒, 𝜏2)                                            (55) 

Thus, the PDF of the normal distribution in Eq. (55) is exactly the likelihood function 𝑙(𝑎|𝑚) in 

Bayesian reference. Here, the effect of model error 휀 on the crack length estimation mainly relies 

on its mean because of central limit theory. Hence, without much loss of accuracy, the likelihood 

function is considered to be only determined by measurement error. Let the PDF of the measured 

crack length at next inspection cycle, i.e., N(𝑎𝑗, 𝜏), be 𝑔(𝑎). The likelihood to observe the 

measured crack length of 𝑎𝑚𝑒𝑎_𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒
∗  is simply calculated by 𝑔(𝑎𝑚𝑒𝑎_𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒

∗ ). 

 

3.3.4 Prior distribution of 𝑚 

 

Factors such as geometry, material, and errors in manufacture process can result in different 

values of parameter 𝑚 in different gears. Therefore, a kind of statistical distribution of 𝑚 for 

gear population exists, denoted here by 𝑁1. However, for a specific gear being monitored, the 

value of 𝑚 should have a very narrow distribution, denoted by 𝑁2, or even be deterministic. This 

value may not be available accurately because of possible errors in experiments. Condition 

monitoring data of this specific gear can reflect the specific properties of this gear, which can be 

used to update the distribution of 𝑚 from a prior in a way described in Section 3.2.3 to get more 

accurate RUL prediction. This section will address how to get a prior distribution of 𝑚.  

First, suppose a set of degradation paths of different failed gears, 𝒫, are available, which are 

collected historical data. For each degradation path corresponding to gear 𝑖 ∈ 𝒫, we need to 

estimate its material parameter m, so as to obtain the prior distribution of m based on the 

historical data. For path i, suppose at inspection points 𝐼𝑁𝑆𝑃𝑗 , 𝑗 = 1, ⋯ , 𝑀, the recorded actual 

crack lengths are 𝑎𝑗
𝑖_𝑎𝑐𝑡, 𝑗 = 1, ⋯ , 𝑀. Now we generate a simulated crack propagation history, 

denoted by 𝑎𝑖_𝑎𝑝𝑝(𝑚), corresponding to parameter m using Eq. (54), considering both model 

uncertainty and measurement error. At the same inspection cycles 𝐼𝑁𝑆𝑃𝑗 , 𝑗 = 1, ⋯ , 𝑀 , the 

simulated crack lengths are 𝑎𝑗
𝑖_𝑎𝑝𝑝(𝑚), 𝑗 = 1, ⋯ , 𝑀 , respectively. Thus, the difference at the 

inspection point between the actual path and simulated path is: 𝑒𝑗
𝑖(𝑚) = 𝑎𝑗

𝑖_𝑎𝑐𝑡 − 𝑎𝑗
𝑖_𝑎𝑝𝑝(𝑚). We 
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can find the optimal material parameter value, 𝑚𝑜𝑝
𝑖 , for this gear by minimizing the difference at 

the inspection points between the actual path and the simulated path. More specifically, the 

Mean-Least-Square (MLS) criteria is used, and the optimal material parameter value for path 

𝑖 ∈ 𝒫, 𝑚𝑜𝑝
𝑖 , satisfies:  

∑(𝑒𝑗
𝑖(𝑚𝑜𝑝

𝑖 ))2 ≤  ∑(𝑒𝑗
𝑖(𝑚))2

𝑀

𝑗=1

𝑀

𝑗=1

, ∀𝑚                                        (56) 

Lastly, by fitting the optimal material parameter values for all failed gears using normal 

distribution, we can obtain the mean 𝜇𝑝𝑟𝑖𝑜𝑟
𝑚 and the standard deviation 𝜎𝑝𝑟𝑖𝑜𝑟

𝑚  for the prior 

distribution of m. Thus, the PDF of prior distribution of 𝑚 is 

𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)~𝑁 (𝜇𝑝𝑟𝑖𝑜𝑟
𝑚 , (𝜎𝑝𝑟𝑖𝑜𝑟

𝑚 )
2

)                                           (57) 

After obtaining 𝑓𝑝𝑟𝑖𝑜𝑟(𝑚), the approach stated in Section 3.3.3 can be implemented to update the 

distribution of parameter 𝑚  for the gear being monitored using Bayesian inference once 

condition monitoring data is available.  

 

4. Example 

 

In this section, a numerical example of gear life prediction using the proposed integrated 

prognostics approach is presented. Simulated crack propagation data, i.e., the degradation paths, 

are generated and used by considering the various uncertainty factors in real gear systems. The 

generated degradation paths are divided into two sets: the training set is used to obtain the prior 

distribution for parameter 𝑚, and the test set is used to test the prediction performance of the 

proposed prognostics approach. The training set can be considered to be the available historical 

gear degradation histories.  

 

4.1  Introduction  

In this example, a 2D finite element model of single cracked tooth is built in software of 

FRANC2D. This software has its unique feature to analyze crack propagation problem. The 

singular mesh near crack tip will be generated automatically, and based on the stress analysis, the 

crack will be propagated and the associated stress intensity factors at each crack length will be 
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recorded accordingly. The material and geometry properties of this specific spur gear used in this 

example are listed in Table 1. Suppose the critical crack length is 𝑎𝑐 = 5.2mm, which is 80% of 

the full length. Beyond this failure threshold, the crack will propagate very fast and the tooth 

breakoff is imminent.  The FE model is shown in Fig. 4.  

The gear dynamic system mentioned in Section 3.2 is used to calculate the dynamic load on 

this cracked tooth. To drive the crack to propagate, large torque is selected. The input torque is 

selected as 320Nm and output load torque is 640Nm. Besides the torques, other values for the 

parameters in dynamic system are exactly the same as those in paper [3]. The rotation speed of 

gearbox is 30Hz. The mesh stiffness of the first two teeth on the pinion for the healthy tooth is 

shown in Fig. 5. The crack is introduced at the root of the second tooth on pinion and the crack 

growth will end until it reaches the critical length which is 5.2mm. The mesh stiffness at the 

critical length is shown in Fig. 6. In these two figures, the blue solid line represents the total 

mesh stiffness and the mauve dash line represents the mesh stiffness of the gear pair having the 

cracked tooth. From these figures we can see that the mesh stiffness is greatly reduced due to 

crack.  

With the mesh stiffness at different crack length available, MATLAB ODE15s function is 

then used to solve the dynamic equations (5−20). Dynamic loads at every contact points, i.e., at 

every rotation angle, can then be calculated using Eq. (22-23). For demonstration, Fig. 7 shows 

the dynamic load and static load on the cracked tooth with the crack length of 3.5mm when it 

meshes. The maximum dynamic load appears at the rotation angle of 13.89 degree, higher than 

the static load. The results show that for the entire crack path, the position of maximum dynamic 

load will move forward a little bit as the crack length increases but the movement is less than 1 

degree so that the load is considered being applied at a fixed position which corresponds to the 

rotation angle of around 14 degree. 

 

Table 1. Material properties and main geometry parameters. 

Young’s 

modulus 

(Pa) 

Poisson’s  

ratio 

Module 

(mm) 

Diametral 

pitch 

(in-1) 

Base 

circle 

radius 

(mm) 

Outer 

circle 

(mm) 

Pressure 

angle 

(degree) 

Teeth No. 

2.068e11 0.3 3.2 8 28.34 33.3 20 19 
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      Fig. 4.  2D FE model for spur gear tooth 

 

 

Fig. 5. Mesh stiffness of healthy gears 
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Fig. 6. Mesh stiffness of gears with cracked pinion 

 

 
Fig. 7. Dynamic load of pinion with crack of 3.5 mm 
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The procedure to obtain the history of stress intensity factor as the crack grows to the critical 

length under varying dynamic load is summarized below: 

1. Select initial crack tip 𝑇𝑗 , 𝑗 = 0 such that the angle of 𝛽0 = 45 degree and initial crack 

length 𝑎0=0.1mm. 

2. Calculate 𝑢𝑗  which is the distance between tooth root 𝑆 and 𝑇𝑗𝐺𝑗. The total mesh stiffness 

𝑘𝑡 is then obtained by formulas proposed in Section 3.2.2 depending on where the crack 

tip is and how much degree the rotation angle is.  

3. Gear dynamic equations are solved by plugging 𝑘𝑡 in MATLAB and the dynamic load is 

computed using Eqs. (22─23).  

4. Apply the maximum load at the contact point on finite element model of cracked pinion 

tooth which corresponds to the rotation angle of around 14 degree in FRANC2D. The 

modes I and II stress intensity factors as well as the crack propagation angle are 

calculated. 

5. Propagate crack in that calculated direction with increment of ∆𝑎=0.1mm. 

6. 𝑗 = 𝑗 + 1, return to step 2 until the crack length reaches critical value. 

Following the procedure above, the history of two modes of stress intensity factors is 

calculated and shown in Fig. 8. The mode I stress intensity factor 𝐾𝐼 is dominant just as stated in 

other published literatures. So in the Paris’ law, only ∆𝐾𝐼 is used to calculate crack propagation 

rate. The third order polynomial is used to fit the discrete values of 𝐾𝐼 obtained by FRANC2D, 

thus 𝐾𝐼(𝑎)  has its continuous form and the value of 𝐾𝐼  at each crack length is available. 

Additionally, since the minimum load during the cracked tooth mesh period is zero, the range of 

stress intensity factor is just the one obtained under the maximum load. Fig. 9 plots the 

maximum dynamic load at different crack lengths. Taking maximum dynamic load as the load to 

apply on the cracked tooth produces larger stress intensity factor compared to static load and 

under this circumstance, the crack bears a faster propagation rate, which will lead to a relatively 

shorter remaining useful life.  
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Fig. 8 Stress intensity factor as a function of crack length 

 

Fig.9 Type I stress intensity factor and maximum dynamic load 
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To validate the proposed integrated approach, a set of crack degradation paths 𝒫 is generated 

using Paris’ law in Eq. (58).  

𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁))]
𝑚

휀, 𝑖 = 0, 1, 2, ⋯ , 𝜆 − 1

𝑎𝑚𝑒𝑎(𝜆∆𝑁) = 𝑎(𝜆∆𝑁) + 𝑒  

𝑎(0) = 0.1

           (58)  

where 𝜆∆𝑁 is the inspection interval. The history of 𝑎𝑚𝑒𝑎  is the generated crack growth path 

which provides the measured crack length at every inspection cycle. In each degradation path 𝑖, 

parameter 𝑚𝑖 is a random sample from its population distribution 𝑁1, and this value is fixed until 

the critical crack length is reached. Model error 휀 samples from its normal distribution in each 

propagation step. And at inspection cycle, measured crack length is generated by adding a 

random value of measurement error 𝑒. All these paths as well as the values of parameter 𝑚𝑖 in 

these paths, termed here as real 𝑚𝑖 , are recorded. The paths in 𝒫 are divided into two sets: 

training set (𝐻) and test set (𝑅). The training set is used to obtain a prior distribution for 

parameter 𝑚 and the test set is used to validate the proposed approach.                           

To generate the degradation paths, we assume the following values and distributions for the 

parameters involved: 

𝐶 = 9.12𝑒 − 11 

𝜏 = 0.2 

𝑚~N (1.4354, 0.22) 

휀~N (2.5, 0.52) 

Note that here the uncertainty regarding to 𝑚  is related to the distribution of the gear 

population, not of the specific gear being monitored. In this example, 10 degradation paths are 

generated according to Eq. (58) until the critical crack length 𝑎𝑐 =5.2mm, as shown in Fig. 10. 

Select #(𝐻) = 7, #(𝑅) = 3. Three test paths #4, #6 and #9 are bolded in Fig. 10. Then for each 

path 𝑖 ∈ 𝐻 , the optimal 𝑚𝑜𝑝
𝑖 , 𝑖 = 1,2, ⋯ , 7  satisfying the Eq. (56) can be found using 

optimization. After these seven values of 𝑚𝑖 are obtained, termed here as trained 𝑚𝑖 , normal 

distribution is used to fit them to obtain a prior for 𝑚. 
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Fig. 10. Ten degradation paths generated using prescribed parameters 

 

4.2 Results 

 

Table 2 shows the ten real values of 𝑚 for generating these ten paths and the seven trained 

values for the first seven paths. Then normal distribution is used to fit them. Finally, the prior 

distribution for 𝑚 is: 

𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)~𝑁(1.454, 0. 10042)      

To validate the proposed prognostics approach, we take paths #4, #6 and #9 for testing. At 

each cycle for updating, the posterior distribution of 𝑚 will be the prior distribution for next 

updating time. In path #4, totally 9 × 106 cycles are consumed to reach the critical length. The 

updating history for path #4 is shown in Table 3. 

In path #6, the failure time is 3.4 × 106 cycles and path #9, totally 1.1 × 106 cycles are 

consumed. The updating histories for distributions of parameter 𝑚 in path #6 and path #9 are 

shown in Table 4 and Table 5, respectively. 
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Table 2. The real values and the trained values of 𝑚 

Path # Real m Trained m 

1 1.2836 1.284 

2 1.5302 1.5328 

3 1.4569 1.4589 

4 1.2495 - 

5 1.5724 1.5729 

6 1.407 - 

7 1.4823 1.4807 

8 1.4844 1.4904 

9 1.5897 - 

10 1.3585 1.3583 

 

Table 3. Test for path #4 to validate proposed approach (real m=1.2495) 

Inspection cycle Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

2 × 106     1.1656 1.2746 0.027 

4 × 106 1.9857 1.2514 0.0194 

6 × 106     3.1521 1.2556 0.016 

8 × 106     4.2336 1.2445 0.0121 

 

Table 4. Test for path #6 to validate proposed approach (real m=1.4082) 

Cycles when updating 

𝑚 
Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

0.7 × 106 0.9349 1.3956 0.037 

1.4 × 106 2.0607 1.4194 0.0253 

2.1 × 106 2.68 1.3931 0.0186 

2.8 × 106 3.7607 1.3967 0.0156 
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Table 5. Test for path #9 to validate proposed approach (real m=1.59) 

Cycles when updating 

𝑚 
Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

0.25 × 106 0.9629 1.5409 0.0458 

0.5 × 106 1.9648 1.5675 0.0298 

0.75 × 106 3.3989 1.6053 0.0201 

1 × 106 4.8369 1.5849 0.0111 

 

Table 3, 4 and 5 show that the Bayesian updates adjusted the mean value of 𝑚 from the 

initial value 1.454 to its real values gradually, as the condition monitoring data on the crack 

length are available. Because the RUL is very sensitive to value of 𝑚, the distribution adjustment 

for 𝑚 is critical for maintenance optimization. Moreover, the standard deviation of 𝑚 is reduced, 

which means that the uncertainty in 𝑚 is reduced through Bayesian updating given the measured 

crack length. To demonstrate this, Fig.11 shows the updated distribution of 𝑚 for path #4. The 

failure time prediction results for path #4, #6 and #9 are shown in Fig. 12, 14 and 15 respectively, 

from which we can see, with the updates for distribution of 𝑚 at certain inspection cycles, the 

prediction of failure time distribution becomes narrower and the mean is approaching the real 

failure time. The updated RUL at each inspection cycle for path #4 is also computed shown in 

Fig. 13 and the vertical lines represent the real RUL at those inspection cycles. 

 

 

5. Conclusions 

 

Accurate health prognosis is critical for ensuring equipment reliability and reducing the 

overall life-cycle costs, by taking full advantage of the useful life of the equipment. In this paper, 

we develop an integrated prognostics method for gear remaining life prediction, which utilizes 

both gear physical models and real-time condition monitoring data. In the developed integrated 

prognostics method, we have specifically developed the general prognosis framework for gears, 

a gear FE model for gear stress analysis, a gear dynamics model for dynamic load calculation, 

and a damage propagation model described using Paris’ law. A gear mesh stiffness computation 
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method is developed based on the gear system potential energy, which results in more realistic 

curved crack propagation paths. Material uncertainty and model uncertainty factors are 

considered to account for the differences among different specific units that affect the damage 

propagation path. A Bayesian method is used to fuse the collected condition monitoring data to 

update the distributions of the uncertainty factors for the current specific unit being monitored, 

and to achieve the updated remaining useful life prediction. 

Example based on simulated degradation data are used to demonstrate the effectiveness of 

the proposed approach. The results demonstrate that the proposed integrated prognostics method 

can effectively adjust the model parameters based on the observed degradation data, and thus 

lead to more accurate remaining useful life predictions, and the prediction uncertainty can be 

reduced with the availability of condition monitoring data.  

 

 

 

 

Fig. 11. Updated  distributions of 𝑚 
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Fig. 12. Updated failure time distribution for path #4 

 

 

Fig. 13. Updated RUL for path #4 
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Fig. 14. Updated failure time distribution for path #6 

 

 

Fig. 15. Updated failure time distribution for path #9 
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