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Abstract 

Surface wear is one of the main failure modes that gears suffer from due to sliding contact in 

the mesh process. However, the existing gear prognostics methods mainly focused on the fatigue 

cracking failure mode, and the existing prediction methods considering surface wear are physics-

based without utilizing condition monitoring data. This paper proposes the first integrated 

prognostics method for failure time prediction of gears subject to surface wear failure mode, 

utilizing both physical models, i.e. the Archard’s wear model, and condition monitoring data, i.e. 

inspection data on gear mass loss in this study. By noticing the importance of wear coefficient in 

Archard’s model, the proposed method can result in a more accurate value of the wear 

coefficient so that the wear evolution in the future is forecasted with more accuracy. To achieve 

this, a Bayesian update process is implemented to incorporate the mass loss observation at an 

inspection point to determine the posterior distribution of the wear coefficient. With more mass 

loss data available, this posterior distribution gets narrower and its mean approaches the actual 

value of the coefficient. To use Archard’ model, the gear mesh geometry and Hertz contact 

theory are applied to compute sliding distance and contact pressure for different points on the 
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tooth flank. The proposed method is validated using run-to-failure experiments with a planetary 

gearbox test rig. 

Keywords: integrated prognostics, gear, surface wear, condition monitoring, physics-based, 

experimental validation 

  

1. Introduction 

Gears, as fundamental building blocks in mechanical power transmission systems, are widely 

used in various industrial applications. The health of gears is important for the safety of 

engineering systems. With the mission of transmitting heavy load, gears mainly suffer from four 

types of failure modes: surface wear, bending fatigue (fatigue cracking), contact fatigue and 

scoring [1]. Existing studies on gear failure time prediction, including modeling and experiment 

validations, were mainly focused on the fatigue cracking failure mode. In this paper, we mainly 

consider the surface wear failure mode, which also plays an important role in gear failures.  

During the mesh process of gear pairs, the tooth flanks are loaded to contact with each other. 

The gear surface movement is a combination of rolling and sliding motions. When the surface 

velocities of the two contact teeth are different, the sliding component is introduced. The sliding 

contact will cause the material removal from the gear teeth and hence the gear mass is reduced. 

For the case of involute profile in spur gears, all the points on the tooth flank experience sliding 

movement except for the pitch point. At the pitch point, pure rolling condition occurs because 

the sliding velocity is zero. Material loss will alter the gear tooth profile geometry, and hence the 

dynamic characteristics of the gearbox. As a consequence, the level of vibration and noise will 

increase, and furthermore, other failure mechanisms may also be accelerated.  
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The prediction of gear wear propagation is of great interest for effective maintenance after 

the transmission systems is deployed in service. With the information about the wear depth on 

gear teeth predicted in advance, we can evaluate the dynamic performance of gearbox in the 

future and timely arrange the repair or the replacement schedule to avoid unexpected further 

damage and downtime. Given a threshold of the wear severity, the remaining useful life (RUL) 

of the gear will be estimated accordingly. The prediction of component RUL associated with the 

prediction confidence estimation is the objective of component prognostics and health 

management.  

The existing prognostics methods can be grouped into three categories: physics-based 

methods, data-driven methods and integrated methods. The three categories are adopted typically 

in different scenarios when considering the availability of physical models, failure histories, 

condition monitoring data and computational complexity.  

Physics-based methods use damage propagation models based on the physic laws of failure 

mechanism. The well-known Paris’ law [2] is the one that is widely used to describe the fatigue 

crack growth with time. By defining a threshold value of crack size, the failure time of the 

component bearing this crack can be predicted. In [3], the authors studied factors that could have 

influences on crack propagation path in the gear tooth, including backup ratio, initial crack 

location, fillet geometry, rim/web compliance, gear size and pressure angle. The research in [4] 

considered the effect of moving load on the crack growth prediction. The authors divided the 

tooth engagement phase into multiple steps to obtain accurate values of stress intensity factor 

(SIF), which is the most important quantity in Paris’ law. Finite element (FE) methods were 

implemented to handle stress intensity factor calculation under complex loading. Interested 

readers can refer to [5-7] for more details on the special element type in FE method for SIF 
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computation near the crack tip. In addition to improving the accuracy of SIF, researchers also 

investigated ways of estimating crack sizes through condition monitoring to better estimate RUL. 

In work [8], authors developed methods to estimate the current crack size by analyzing gearbox 

transmission error. Kacprzynksi et al. [9] proposed a prognostic method that can predict gear 

failure probability by fusing physics-of-failure models and diagnostics information. However, 

due to complicated damage initiation and propagation processes, physics-based methods are 

restricted to very limited areas of simple and specific applications. It also costs extra efforts in 

large amount of experiments to determine the parameters used in the physical laws.  

Data-driven methods apply when sufficient failure histories or condition monitoring data are 

available, based on which we can compute the failure distribution or form the relationship 

between ages and CM data. Banjevic et al. [10] proposed a proportional-hazards model with time 

dependent stochastic covariates as lifetime model to predict the component failure rate and to 

optimize the replacement policy. Gebraeel et al. [11] selected the degradation model as 

exponential in which the parameters were updated using a Bayesian approach. In addition to the 

degradation models with pre-defined mathematical form, the data-driven models that are 

established through machine learning are also playing an important role for large data sets. 

Gebraeel and Lawley [12] developed neural networks to predict bearing failure time, which 

aimed to train a relationship between the bearing service time and the corresponding vibration 

spectrum. Tian et al. [13] developed a neural network to predict RUL using both failure and 

suspension condition monitoring histories. Wang et al. [14] investigated neuro-fuzzy approach 

and recurrent neural network for gear prognostics with various failure modes. An extended 

recurrent neural network was proposed to predict the health condition of gears in [15], in which 

the Elman context layer was incorporated to enhance its ability to model nonlinear time series. 
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Xi et al. developed a copula-based sampling method for data-driven prognostics, where a 

Copula-based statistical model was proposed for degradation modeling and simulation-based 

method was employed for remaining life prediction [16]. These processes require data to be 

sufficient so as to gain the statistical property, and otherwise the prediction could be 

unsatisfactory. The scarcity of failure histories, time-varying operating conditions and 

thresholding setting are examples of challenges for data-driven methods to be effective.  

By noticing the merits and shortcomings of these two above-mentioned methods, integrated 

methods are proposed to combine physics of failure and condition monitoring data to benefit 

from both. In integrated methods, the physical model parameters are treated as random variables, 

and they are updated using condition monitoring data so as to approach their real values. 

Bayesian framework fits well to achieve the goal of integrated prognostics because of its natural 

environment for sequential learning and uncertainty quantification. Therefore, it is widely used 

in integrated prognostics. Coppe et al. [17] studied the problem of crack propagation in aircraft 

fuselage panel, where Bayesian inference was used to estimate parameters in Paris’ law and error 

term with assumption of independence of model parameters. Later on An et al. [18] extended the 

methods to consider the correlation between model parameters. In authors’ prior work [19], 

integrated prognostics methods were proposed for gear health prediction and uncertainty 

quantification. The authors then proposed to use polynomial chaos expansion to improve the 

efficiency of Bayesian update process in prognostics [20]. To handle the time-varying operating 

conditions, an approach was devised in [21] to make the integrated prognostics applicable in 

various loading environment. Bayesian inference also applied to study the spall propagation in 

bearings [22]. In recent years there is an increasing volume of publications that used dynamic 

systems as degradation models because of its natural interface with real-time condition 
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monitoring data. In [23], the Kalman filter was implemented to update RUL prediction of 

bearings using vibration signature as observations. Prognostic models in [24-26] are established 

in a particle filtering framework, in which the problem of non-linear state transition and non-

Gaussian noise can be tackled.   

In this paper, an integrated prognostics method is developed to predict the wear propagation 

on gears. Researchers have proposed various wear models which are dedicated to forecasting the 

wear progression with time [27]–[38], most of which can be classified as physics-based methods. 

Archard’s wear model proposed in [27] is a simple but classic model based on the theory of 

asperity contact.  It expressed the worn volume as a function of sliding distance, applied load and 

hardness of materials. The coefficient in Archard’s model was related to the probability that the 

two asperity would produce a wear particle. A summary of understanding in wear modeling for 

metals was presented in [28]. The paper also proposed future research areas for metal wear 

prediction. Authors in [29] examined two mechanical wear processes, severe abrasive wear and 

mild sliding wear, to show that due to variety and complexity of the mating surface conditions, 

tests are actually needed to determine the parameters in wear propagation laws. In [30], the 

authors did an analysis on steel surface using scanning electron microscopy and auger electron 

microscopy and proposed mathematical expressions for the wear rate. The author in [31] 

discussed the wear resistance, wear model and wear rate using experimental results, and 

explained the wear phenomenon from the viewpoints of plastic deformation and fracture. The 

sliding model proposed in [32] considered two wear mechanisms: thermal desorption at low 

contact temperature and oxidative mechanism at elevated contact temperature. The micro-EHL 

effects were included by simulating two rough surfaces using digitized surface roughness 

profiles. Authors of [33] investigated sliding wear from micromechanics level. Periodic unit cell-
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type continuum mechanics models were used to obtain the wear rate. A wear model was 

proposed in which the authors researched the influence on the wear rate of the principal material, 

loading and surface roughness. In [34], analytical time domain models were used to predict wear 

status in transient and steady-state operating conditions. A sliding polymer-based contact was 

adopted in the wear model. The author in [35] developed a mathematical model to correlate the 

material volumetric loss due to wear with the dissipation energy in sliding contacts. Two 

mechanisms of energy loss were considered: plastic deformation and elastic energy of the 

particulate. This model can be used to predict the service life of components and structures. The 

finite element model developed in [36] generalized Archard’s law by allowing hardness of the 

soft material to be a function of temperature. The model in [37] used a free mesh to investigate 

the sliding wear in a composite alloy. The authors in [38] considered mechanical wear between 

two materials at high velocity. Apart from the above-mentioned physics-based models, data-

driven methods are also presented to investigate the relationship of wear loss and potential 

effective conditions. For example, empirical models of wear rate were obtained by response 

surface method [39], [40] and artificial neural networks were used in [41], [42]. 

 Among the preceding research work, Archard’ wear model [27], [31] is now generally 

accepted as a suitable framework within which quantitative analysis on wear progression can be 

discussed [43]. The Archard’ model was further generalized to regard the wear process as an 

initial value problem in [44] and was described by a differential equation as 

𝑑ℎ

𝑑𝑠
= 𝑘𝑝.                                                                       (1) 

where ℎ is the wear depth, 𝑠 is the sliding distance, 𝑘 is a dimensional wear coefficient, and 𝑝 is 

the contact pressure. It is clear that to obtain the wear depth of a point on tooth flank, (1) requires 
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the values of contact pressure 𝑝 and sliding distance 𝑠. The wear coefficient 𝑘 is an important 

parameter that determines the wear rate. As mentioned before, parameter determination is a 

serious task in physics-based prognostics. Because there exists a large amount of variation in the 

value of wear coefficient among different units due to contacting material property, experiments 

are needed for wear coefficient determination. As far as physics-based methods are concerned, 

once the coefficient is obtained through experiment, it will be fixed as a material dependent 

constant ready to use for other components. This assumption apparently neglects the variation or 

uncertainty in material properties, surface conditions and lubrication conditions. Hence, using a 

fixed wear coefficient did not consider the uncertainty in the wear propagation process, and 

change in the coefficient will have big impact on wear propagation and thus failure time 

prediction. This paper will overcome this problem by treating wear coefficient as a random 

variable, whose distribution is adjustable according to the condition monitoring data specific to 

the component of interest. Although the wear coefficient distribution for the population may be 

wide, it will be very narrow or even deterministic for a specific gear unit under consideration, 

and we intend to determine that using the proposed integrated prognostics method. Next we will 

give a brief review on physics-based methods using Archard’s model as well as a summary of 

the proposed integrated method. 

The Archard’ model was used to predict the wear in spur and helical gears in [45], [46] 

respectively. For the spur gear model, the sliding distance is calculated based on involute profile. 

The contact pressure was obtained by a Winkler surface model. When calculating the load on 

gear tooth, the mesh stiffness was assumed to be constant for simplicity. The wear coefficient 𝑘 

is selected as a parameter with constant value. There were no experiment results reported in these 

two papers to validate the method. A wear prediction methodology was proposed in [1] for 
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parallel axis gear pairs, which was also based on Archard’ model. In the paper, commercial 

software was employed to calculate contact pressure during gear mesh process. Thanks to the 

finite element model and technique of surface integral formulation, the method was able to 

calculate the contact pressure and the sliding distance while accounting for the geometry change 

due to wear and tooth manufacturing imperfections. In the experimental validation, four tests 

were conducted. The purpose of the first experiment was to determine the wear coefficient 𝑘. 

The predictions were conducted using the same 𝑘  obtained in the first experiment and were 

compared to the other three tests because the authors assumed that all the test specimens were 

manufactured with the same material, heat treatment, and manufacturing process, and also 

assumed the same test conditions. These assumptions exclude the variations of wear coefficient 

among different units and impose risks of applying this wear coefficient to other units.  

In this paper, we consider the wear coefficient as a random variable to account for its 

variation in different units. However, for a specific unit, the uncertainty of the wear coefficient 

value is much less than that of the population. Therefore, we propose to use inspection data 

during the wear process to reduce the uncertainty in wear coefficient for the specific unit. 

Because the wear removes material of contacting surface, the mass loss would be an effective 

indicator for the wear status. Mass loss can be obtained by measuring the weight of the gear 

offline, or by online monitoring system to measure the quantity of metal particles. The mass loss 

data will be integrated into a Bayesian inference to update the prior distribution of the wear 

coefficient into its posterior distribution. The posterior distribution is expected to better 

characterize the specific wear process as a result of the data integration.   

The remainder of the paper is organized as follows. In Section 2, the integrated prognostics 

framework is presented, which shows the logic of the integration of physical models and 
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condition monitoring data. Section 3 illustrates how the wear coefficient is updated in the model 

update process through Bayesian inference. In Section 4, the physical models for wear prediction 

of a spur gear are established. Section 5 presents the method validation using run-to-failure 

experiments on a planetary gearbox test rig. Section 6 concludes the work.    

 

2. Integrated prognostics method for gear wear prediction 

Compared to data-driven prognostics methods, predictive models that are based on physics of 

failure bear better accuracy, but requires efforts to build physical models, which could be very 

complex, and determine the model parameters. The idea of integrated prognostics is to integrate 

physical models and data from multiple sources to predict the damage progression and remaining 

useful life. As mentioned before, the most commonly used way to integrate physical models and 

data is the Bayesian inference approach [17-26], [47]. The framework of the proposed integrated 

prognostics method in this paper is shown in Figure 1. There are three parts in this framework: 

physical models, data and update process. In the part of physical models, the wear progression 

model, that is the Archard’s wear model, is used to predict the wear depth evolution. The wear 

coefficient k is treated as a random variable. The sliding distance and contact pressure used in 

Archard’s model are calculated based on gears mesh geometry and contact process. In the part of 

data, two types of data are listed. The data of failure history could give us prior information of 

wear coefficient value as a statistical property of gear population. In contrast, the inspection data 

is collected from the specific individual gear that is currently in use. In this paper, the mass loss 

of spur gear at inspection times serves as the inspection data. The purpose of the model update 

part is to use Bayesian inference to update the distribution of wear coefficient by taking in the 

inspection data as observations in the inference. 
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Figure 1. Framework of integrated prognostic method for gear wear prediction 

 

3. Physical models in gear wear prediction 

In this section, physical quantities that are needed to implement Archard’ model and 

Bayesian inference are computed, which include contact pressure 𝑝, sliding distance 𝑠 and the 

mass loss 𝑚𝑙. 

3.1 Contact pressure and sliding distance 

During the mesh process of gears, there is a relative movement between the two meshing 

teeth because of the difference in tangential velocity, except for the pitch point in spur gears. The 

sliding movement causes wear of gear surface. The material particles will be removed due to the 

surface wear and the tooth profile will be altered. As discussed before, the Archard wear model 

describes the wear rate. We can discretize the model into the form in (2) 
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ℎ(𝑖) = ℎ(𝑖 − 1) + 𝑘𝑝(∆𝑠)                                                           (2) 

In order to use Archard’s wear model to predict the gear surface wear, two important 

quantities are needed: the contact pressure and the sliding distance of all the points on the tooth 

flank during the mesh process. In order to analyze the two quantities for all the points on the 

tooth flank, a coordinate system is established first. In this coordinate system, the origin is 

located at the pitch point; 𝑦 axis is along the line of action; 𝑥 axis is perpendicular to the 𝑦 axis. 

For spur gear with involute tooth profile, the contact points are moving along the 𝑦 axis. As 

shown in Figure 2, 𝑃 is the pitch point; 𝐵1 and 𝐵2 are the tangential touch points of base cycles; 

the tooth comes into mesh at point 𝑄2 and departs the engagement at point 𝑄1; the two points 𝑄2
′  

and  𝑄1
′  are the transition positions for the two type of contacts: single-pair-contact and double-

pair-contact. The load carried by this tooth is plotted above the 𝑦 axis without scale. 

 

Figure 2. The coordinate system and the load distribution 

 

When the meshing gears are loaded together by transmission load 𝐹, the surface will deform 

to form the area of contact, as shown in Figure 3. The contact can be regarded as the cylinder on 

cylinder line contact. Hertz contact theory will be applied to calculate the contact pressure for 

each point on tooth flank when it comes into mesh. Suppose one point on the tooth flank starts 
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the engagement at point 𝑁 which has the coordinate of (0, 𝑦). As shown in Figure 3, the contact 

width is 2𝑎𝐻. The radiuses of curvature at the contact point for the pinion and gear are 𝑅1and 𝑅2 

respectively.  

𝑅1 = 𝑅𝑏1 tan 𝛼0 + 𝑦,                                                            (3) 

𝑅2 = 𝑅𝑏1 tan 𝛼0 − 𝑦,                                                            (4) 

The effective radius of curvature 𝑅∗ is defined as  

1

𝑅∗
=

1

𝑅1
+

1

𝑅2
.                                                                 (5) 

In a similar manner, the effective modulus of elasticity 𝐸∗ is defined as 

1

𝐸∗
=

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
.                                                       (6) 

 

Figure 3. Contact of a pair of teeth 

According to Hertz contact theory, the half contact width is  

𝑎𝐻 = √
4𝐹𝑅∗

𝜋𝐸∗
                                                                    (7) 
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and the mean contact pressure is  

𝑃̅𝑁 =
4𝐹

3𝜋𝑎𝐻
                                                                     (8) 

After obtaining the contact pressure, another quantity that is needed in Archard’s wear model is 

the sliding distance. Ref [21] gave an analytical formula for sliding distance 𝑠1 of the point 

𝑁 (0, 𝑦) on pinion flank as follows. 

𝑠1 = 𝑎𝐻 − √(𝑅2)2 − (𝑅𝑝2 sin 𝛼0 − 𝑦1𝑑) + 𝑅𝑝2 cos 𝛼0                          (9) 

𝑅2 = √(𝑅𝑝2 cos 𝛼0 − 𝑎𝐻)2 + (𝑅𝑝2 sin 𝛼0 − 𝑦1𝑒)
2

                            (10) 

𝑦1𝑒 = √𝑅1 − (𝑅𝑝1 cos 𝛼0 + 𝑎𝐻)2 − 𝑅𝑝1 sin 𝛼0                               (11) 

𝑦1𝑑 = √𝑅1 − (𝑅𝑝1 cos 𝛼0 − 𝑎𝐻)2 − 𝑅𝑝1 sin 𝛼0                              (12) 

𝑅1 = √(𝑅𝑝1 cos 𝛼0)2 + (𝑅𝑝2 sin 𝛼0 − 𝑦)
2

                                   (13) 

With the contact pressure and the sliding distance available, the determination of wear 

coefficient is required before using Archard’s model to predict wear depth evolution. 

3.2 Mass loss of wear 

The gear type we consider in this paper is spur gear, which has a symmetric geometry. 

Therefore, the volume of metal loss is equal to the area removed according to the wear depth in 

2D multiplied by the thickness of the tooth. As wear accumulates, tooth profile will change due 

to material loss. Figure 4 depicts the 2D shape of the spur gear tooth, in which we use a dashed 
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line to represent the tooth profile after some wear accumulation. The shaded area between the 

original tooth profile and the new one is the area of material loss. This area can be approximated 

in the following way. First divide the tooth height vertically at the points where the wear depth is 

computed. Then calculate the area of the each small element using the wear depth and sum them 

up. The mass loss will be calculated by multiplying this area by the thickness of the tooth, and 

then by the density of the material. 

 

Figure 4. Area of material loss due to wear accumulation 

 

4. Model update through Bayesian inference 

In this study, Archard’s wear model is used to predict the wear depth evolution at each point 

on the tooth surface. More accurate wear coefficient in the model leads to more accurate wear 

prediction. However, different gears most likely have different wear evolution processes due to 

variations in material property, manufacturing process and working conditions. We therefore 

consider the wear coefficient as a random variable to account for the uncertainty in wear 

evolution process from the population point of view. Meanwhile, the health condition of a 

specific individual is of our interest. The uncertainty in failure time for an individual unit is 

much less than that for the population. Hence, a mechanism of uncertainty reduction is needed in 
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the wear prediction process. By noticing the material removal as a direct consequence of gear 

wear process, the gear mass loss would be a good indicator of wear status. The Bayesian 

inference will take the data on gear mass loss as observations to update the distribution of the 

wear coefficient. The formula for determining the posterior distribution of the uncertain 

parameter, wear coefficient k, is given as follows:  

𝑓𝑝𝑜𝑠𝑡(𝑘|𝑚) =
𝑙(𝑚|𝑘)𝑓𝑝𝑟𝑖𝑜𝑟(𝑘)

∫ 𝑙(𝑚|𝑘)𝑓𝑝𝑟𝑖𝑜𝑟(𝑘) 𝑑𝑘
.                                       (14) 

where 𝑚 represents the mass loss. The update on wear coefficient distribution is conducted at 

each inspection time when a new measurement of gear weight is available. The posterior 

distribution will serve as the prior distribution for the next update at the next inspection time. 

At each inspection time 𝑇𝑗 , the measured mass loss is 𝑚𝑗
𝑜𝑏𝑠. With the wear coefficient 𝑘𝑗−1 

obtained at the previous inspection time 𝑇𝑗−1, the predicted mass loss at inspection times 𝑇1 up to 

𝑇𝑗  are thus denoted by 𝑚1:𝑗
𝑚𝑜𝑑 . We define the measurement error as 𝑒 = 𝑚𝑜𝑏𝑠 − 𝑚𝑚𝑜𝑑  and 

assume it follows zero-mean Gaussian distribution with standard deviation 𝜎 . It is further 

assumed that the measurement errors at inspection times are identical and independently 

distributed. Thus, the likelihood to observe the mass loss at inspection times up to 𝑇𝑗 is 

𝑙(𝑚1:𝑗
𝑜𝑏𝑠|𝑘𝑗−1) = ∏

1

√2𝜋𝜎
exp (

(𝑚𝑖
𝑜𝑏𝑠 − 𝑚𝑖

𝑚𝑜𝑑)2

2𝜎2
)

𝑗

𝑖=1

                          (15) 

where 𝑚1:𝑗
𝑜𝑏𝑠  represents the measured mass loss at inspections times 𝑇1 up to 𝑇𝑗.  

In this paper, the prior in the Bayesian formula is assumed to be known and represents the 

knowledge of the wear process of the gear population.  The prior can be obtained using the 
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following way in practice. For example, we suppose that 𝑁 degradation paths from 𝑁 test units 

are available. For each path, we use least square to obtain an estimate for the coefficient. Then 

we use Gaussian distribution to fit these 𝑁 coefficients. Then this Gaussian distribution will be 

used as a prior distribution in the Bayesian equation. When no or little prior information on the 

failure history is known, it is more reasonable to use a non-informative prior. 

5. Validation using planetary gearbox run-to-failure experiments 

Planetary gearbox is extensively used in helicopters, wind turbines and other systems which 

require high power transmission and good torque ratio in a small volume. The three types of 

gears involved are called sun gear, planet gear and ring gear. By changing the running state 

(stationary, rotation, or revolution) of each gear type, the planetary gearbox can have different 

configurations. The configuration to be investigated in this experiment is to keep ring gear 

stationary and provide power to the sun gear. All the gears are spur type.  

Run-to-failure experiments in the lab environment were conducted using a planetary gearbox 

test rig, shown in Figure 5, hosted by the Reliability Research Lab at the University of Alberta. 

In this experiment, data collected include vibration signals, current signals of the drive/load 

motor, encoder signal and torque signal. In addition, the metal particle counter data and the 

weight loss of gears were also recorded. The physical parameters of this planetary gear set are 

listed in Table 1. More details on this experiment can be found in technical report  [48]. Among 

all the gears, sun gear, as the driving gear, experiences the most severe wear. Therefore, the wear 

of the sun gear is of interest to study.  
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Figure 5. Planetary gearbox test rig [48] 

Table 1. The physical parameters of the planetary gear set [48] 

Parameters Sun gear Planet gear Ring gear 

Number of teeth 19 31 81 

Module (mm) 3.2 3.2 3.2 

Pressure angle 20° 20° 20° 

Mass (kg) 0.7 1.822 5.982 

Face width (m) 0.0381 0.0381 0.0381 

Young’s modulus (Pa) 2.068 × 1011 2.068 × 1011 2.068 × 1011 

Poisson’s ratio 0.3 0.3 0.3 

Base circle radius (mm) 28.3 46.2 120.8 

 

Before the gear was considered failed, the planetary gearbox experienced 19 runs. Each run 

had different durations. For example, run #1 lasted 8 hours 22 minutes, run #5 lasted 32 hours. 

The photographs in Figure 6 show the tooth profile changes of the sun gear during this 

experiment. In these photographs, we can see the gear tooth became thinner gradually as runs 

continued and more material were removed. At the end of run #19, the thickness of the teeth was 
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reduced to about 50% of the original thickness. According to the tooth profile changes and the 

metal particle data, this run-to-failure experiment can be divided into three stages:  

 Runs 1-6: Normal operations to damage initiation 

 Runs 7-11: Initial to severe damage progression 

 Runs 12-19: Severe damage progression and profile change. 

The weight loss of the sun gear is plotted in Figure 7. During these 19 runs, the input torque 

was kept to a constant level starting from run #5. Also considering the experiment set up process 

and the relatively large measurement error in the early stage, the data on the weight loss during 

run #1 to run #4 are not used in the validation.   

 

Figure 6. Tooth profile changes of the sun gear [48] 
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Figure 7. Measured mass loss of the sun gear 

The contact pressure and sliding distance for each point on the sun gear tooth flank are 

calculated based on the methods given in Section 3. The contact pressure and the sliding distance 

for each point on tooth surface are assumed to be constant along the wear progression. During 

the late stages after run #14, we believe that this assumption is not valid anymore because the 

wear rate is accelerating and the predicted mass loss will be less than the actual mass loss. 

Therefore, for the purpose of validating the integrated prognostics method, the mass loss records 

from run #5 to run #14 are used to update the wear coefficient. 

Starting from run #5, the input torque is fixed at 25 klb-in with the drive motor speed of 1200 
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Figure 8. Static load on sun gear tooth 

 

In addition, the gear mesh process is actually a combination of rolling and sliding contact. 

Beside surface wear due to sliding contact, the material removal is also contributed by rolling 

contact fatigue. During the experiment, pitting was observed on the gear tooth which was caused 

by rolling contact. To account for the effect of pitting on the mass loss, we select the maximum 

wear depth as the wear depth for all the points. The reason is that, in the photograph of tooth 

profile, the wear volume change is roughly uniform for all the points on the tooth flank.  
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because the photograph suggests similar wear condition in all the teeth of the sun gear. 
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For a given value of wear coefficient, we can use discretized Archard’s model (2) to predict 

the wear depth. For example, when 𝑘 = 1.27 × 10−15Pa−1, Figure 9 displays the predicted wear 

depth from run #5 to run #14 by considering sliding wear effect only. From the figure, we can 

see that the maximum wear depth occurs near the tooth root area.  

  

 

Figure 9. Predicted wear depth for the sun gear  
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in (14) and (15), the update process is tabulated in Table 2. The updated distributions of the wear 

coefficient are shown in Figure 10.  

Table 2. Update process for wear coefficient 𝒌 (with Gaussian prior) 

Run # Cycles 
Measured mass 

loss 
Mean of 𝑘 Std of 𝑘 

  0 3e-15 1e-15 

5 89600 1.4 1.0552e-15 2.9315e-16 

6 268800 4.45 0.9288e-15 9.2107e-17 

7    358400 8.12 1.0664e-15 4.9948e-17 

8 448000 10.9 1.1636e-15 3.2156e-17 

9 582400 13.81 1.2186e-15 2.2289e-17 

10 716800 17 1.2513e-15 1.6210e-17 

11 868000 20.13 1.2672e-15 1.2228e-17 

12 1002400 23.14 1.2748e-15 9.5061e-18 

13 1136800 26.04 1.2776e-15 7.5751e-18 

14 1271200 28.71 1.2770e-15 6.1681e-18 

 

From the results of update process, it is observed that the mean of wear coefficient 𝑘 has 

been adjusted from the prior value 3 × 10−15Pa−1  to the value around 1.27 × 10−15Pa−1 . 

Moreover, the shape of the distribution gets narrower, which indicates that the uncertainty is 

reduced gradually as more data of mass loss are available.  
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Figure 10. Updated distributions of wear coefficient 𝒌 

Next, we use uniform distribution as the prior distribution in the Bayesian updates. We select 
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the mean of posterior distribution gradually converges to the value of around 1.28e-15 as more 

measurements arrive. Recall that the Bayesian updates using Gaussian prior eventually gave us 

the mean parameter value of 1.27e-15. This fact tells that non-informative prior achieve similar 

parameter estimation as the Gaussian prior. 
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Table 3. Update process for wear coefficient 𝒌 (with uniform prior) 

Run # Cycles 
Measured mass 

loss 
Mean of 𝑘 Std of 𝑘 

  0 3e-15 1e-15 

5 89600 1.4 1.4156e-15 1.2782e-16 

6 268800 4.45 1.2947e-15 2.3659e-17 

7    358400 8.12 1.2911e-15 2.0243e-17 

8 448000 10.9 1.2962e-15 2.2081e-17 

9 582400 13.81 1.2979e-15 2.0758e-17 

10 716800 17 1.3010e-15 1.9463e-17 

11 868000 20.13 1.2966e-15 1.5996e-17 

12 1002400 23.14 1.2922e-15 1.3345e-17 

13 1136800 26.04 1.2873e-15 1.1187e-17 

14 1271200 28.71 1.2810e-15 8.5426e-18 

 

As the wear coefficient gets more accurate, the failure time can be predicted with increased 

accuracy accordingly when a failure threshold is given. We consider the instance of Gaussian 

prior here and the similar result holds for uniform prior. In this example, we take the mass loss 

after run #14 (28.71g) as the failure threshold. With such threshold, the actual failure time will 

be at 1,271,200 cycles as recorded in the experiment, also indicated in Table 2. Figure 11 shows 

the update process for the failure time prediction using the updated wear coefficient in Figure 10. 

As expected, the distribution converges to the actual failure time with reduced uncertainty.  

The prediction results are compared between the physics-based method and the integrated 

prognostics method, shown in Figure 12. The green dotted line with triangle marks represents the 

mass loss predicted by the physics-based method, which uses a prior value of wear coefficient 

𝑘 = 3 × 10−15Pa−1 . While, the red dashed line with circle marks represents the mass loss 
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predicted by the integrated prognostics method, which uses the mean value of posterior 

distribution of the wear coefficient in the last update 𝑘 = 1.27 × 10−15Pa−1. From the figure, it 

is obvious that the predicted results obtained by the integrated prognostics method agree well 

with the measured data from run #5 and run #14. In contrast, there is large discrepancy between 

the mass loss predicted by the physics-based method and the measured data. The results show 

that the integrated prognostics method is able to accurately estimate the wear coefficient for a 

specific unit under monitoring by using measurement on gear mass loss. With the updated wear 

coefficient obtained through Bayesian inference, the wear process and subsequently the failure 

time can be predicted in a more accurate fashion.   

Figure 11. Updated distributions for failure time. 
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Figure 12. Comparison between the integrated method and physics-based method 
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knowledge, and the prior distribution of 𝛼 is specified to be 𝑁(0, 0.32), and the prior distribution 

of 𝛽 is set to be 𝑁(1 × 10−5, 0.3 × 10−52
). 𝜀 follows normal distribution 𝑁(0, 0.12). Based on 

the collected metal loss data, Bayesian inference is applied to update the uncertain parameters 𝛼 

and 𝛽, and thus metal loss prediction can be refined.  

We also considered another degradation function, linear degradation function, because of the 

shape of the metal loss degradation path, which takes the following form:  

𝑀𝐿(𝑡𝑖) = 𝑎 + 𝑏𝑡𝑖 + 𝜀                                                          (17) 

where 𝑀𝐿(𝑡𝑖)  is the metal loss measurement data, 𝑎  and 𝑏  are uncertain parameters to be 

updated, and 𝜀0 is the error term. Suppose the prior distribution of 𝑎 is specified to be 𝑁(0, 0.32), 

and the prior distribution of 𝛽  is set to be 𝑁(1 × 10−5, 0.3 × 10−52
) . 𝜀  follows normal 

distribution 𝑁(0, 0.12). Bayesian inference is applied to update the uncertain parameters a and b 

based on the metal loss data, to refine metal loss predictions.  

The metal loss prediction results using integrated method and the above two data-driven 

methods are presented in Figure 13, from which we can see clearly that using the coefficient 

obtained by the last update, integrated method gives more accurate mass loss prediction. In 

Figure 14, we plot the RUL error (defined as the difference between the predicted RUL and the 

real RUL) at every inspection time. The comparison shows that the integrated method using 

uniform prior in the Bayesian update performs best for this specific degradation in that it gives 

smallest RUL prediction error starting from very early stage. The comparative study results show 

that the proposed integrated method can results in more accurate wear propagation prediction 

comparing to the popular data-driven methods based on Bayesian inference and generic 

degradation models.  
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Figure 13. Comparison of mass loss prediction between the integrated method and data-

driven methods 

 

Figure 14. Comparison of RUL prediction error between the integrated method and data-

driven methods 
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6. Conclusions and future work 

In this paper, an integrated prognostics method is proposed for failure time prediction of 

gears subject to surface wear failure mode, utilizing both physical models and condition 

monitoring data. Comparing to existing physics-based gear wear prediction methods which use 

fixed wear coefficient, the proposed integrated method can result in more accurate estimate of 

wear coefficient distribution for the individual gear unit being monitored, and thus lead to more 

accurate failure time prediction. The proposed method is validated using gearbox run-to-failure 

experiments, and compared with the physics-based methods and data-driven methods.  

The wear model is used to predict the surface wear due to sliding contact. In order to account 

for the contribution of rolling contact to the mass loss, we propose to remove the material using 

the maximum wear depth. In the future, we may investigate the physical mechanism to account 

for the interactions between pitting and surface wear processes. In addition, the assumption of 

constant contact pressure and sliding distance does not seem to be suitable anymore for the late 

stage of the wear process with severe profile change. We plan to further investigate how to 

account for the effects of tooth profile changes due to material removal, and develop gear 

dynamic model with high fidelity to simulate the gear mesh process, as well as method to 

calculate the increased varying contact pressure, with the presence of significant gear profile 

change. Such degradation pattern change results in a change-point in the degradation path. If we 

have failure histories of multiple units, all with similar degradation pattern with such change-

point, two-phase change-point regression models will be effective candidates for locating the 
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change-point position [50-52], which will support identifying which physical models to utilize in 

the integrated prognostics approach and predicting the gear remaining life.  
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