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Abstract. The present paper is devoted to the investigation of an important family of absorbed

singular diffusion processes exhibiting long transient dynamics, namely, interesting and important

dynamical behaviours over long but finite time scales. We explore the multiscale dynamics by es-

tablishing the asymptotic distribution of the normalized extinction time, the asymptotic reciprocal

relationship between the mean extinction time and the principal eigenvalue of the generator, and

a sophisticated multiscale estimate of solutions. While information about the extinction time and

mean extinction time uncovers fundamental principles quantifying in particular the lifespan of in-

teresting dynamical behaviours combined and its natural connection with the principal eigenvalue,

the multiscale estimate characterizes the dynamics over different time scales. These are achieved

by examining quasi-stationary distributions (QSDs) that govern the dynamics before the eventual

absorption happens, and establishing the powerful sub-exponential large deviation principle (LDP)

for QSDs, which determines the quasi-potential function and prefactor in the WKB expansion,

and therefore, provides very fine asymptotic or concentration properties of QSDs. To the best of

our knowledge, this is the first time that the sub-exponential LDP for QSDs is established for ab-

sorbed singular diffusion processes. Our approach is analytic and elementary. As byproducts or

consequences, new results about QSDs near the absorbing state and infinity, the sub-exponential

asymptotic of the principal eigenvalue, and the asymptotic of the principal eigenfunction are ob-

tained. The sub-exponential LDP for QSDs is of independent interest and expected to have more

far-reaching consequences. Applications to logistic diffusion processes arising from chemical reactions

and population dynamics are discussed. In particular, Keizer’s paradox concerning the long-term

dynamical disagreement between a deterministic model and its stochastic counterpart, and diffusion

approximation of QSDs are rigorously justified.
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1. Introduction

A large number of experimental and numerical evidences show that complex processes in biology,

chemistry, fluids, etc. often exhibit transient dynamics, namely, intriguing and important dynamical

behaviours over a relatively long but finite time period. For instance, species in a community usually

coexist for a long period that may span dozens or even hundreds of generations before the extinction

of at least one species (see e.g. [37, 38, 67]). In a closed chemical reaction system, chemical oscillations

could last for a long period before the system eventually relaxes to the thermal equilibrium due to the

inevitable heat dissipation (see e.g. [69, 78]). In an open flow, transiently chaotic advective dynamics

can be generated to impact the spreading of pollutants, the population dynamics of plankton and

larvae, biological and chemical reactions and so on (see e.g. [50, 74]). In the dynamics of decision

making, the course of thinking or discussion could be complex and last for a long period before a

decision is reached (see e.g. [26, 73, 74]). The treatment of such dynamical behaviours is out of

the scope of traditional dynamical system theories focusing on long-term dynamics. Addressing long

but finite-time dynamical behaviors, transient dynamics has demonstrated its significance in many

scientific areas and been attracting an increasing amount of attention. Given more and more results

from experiments and numerical studies (see e.g. [50, 65, 38]), rigorous mathematical frameworks are

expected to classify transient dynamics of different mechanisms and further stimulate the investigation

towards a better understanding of transient dynamics.

In the present paper, we continue to study the transient dynamics and related properties of a family

of absorbed singular diffusion processes arising from chemical reactions and population dynamics

initiated in the works [70, 45]. More precisely, we consider the following randomly perturbed dynamical
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systems:

dx = b(x)dt+ ε
√
a(x)dWt, x ∈ [0,∞), (1.1)

where 0 < ε � 1 is a parameter, b : [0,∞) → R, a : [0,∞) → [0,∞) and Wt is the standard one-

dimensional Wiener process on some probability space. The equation (1.1) is often derived as the

diffusion approximation [49] of re-scaled birth-and-death processes modelling the evolution of some

species in a community or some type of molecules in a chemical reaction system (see e.g. [27, 47, 3]).

The reader is referred to Subsections 6.1 and 6.2 for a brief exposition. In this circumstance, the

unperturbed ordinary differential equation (ODE)

ẋ = b(x), x ∈ [0,∞) (1.2)

is the classical mean-field approximation [48] and the small noise ε
√
a(x)Wt is often interpreted as

the demographic or internal noise.

We make the following standard assumptions on the coefficients a and b throughout this paper.

(H) The functions b : [0,∞)→ R and a : [0,∞)→ [0,∞) satisfy the following conditions:

(1) b ∈ C1([0,∞)) ∩ C2((0,∞)), b(0) = 0, b′(0) > 0, and lim supx→∞ b(x) < 0;

(2) a ∈ C2([0,∞)) ∩ C3((0,∞)), a(0) = 0, a′(0) > 0, and a > 0 on (0,∞);

(3) limx→∞
b2(x)
a(x) = ∞, lim supx→∞

max{a(x),|a′(x)|,|a′′(x)|,|b′(x)|}
|b(x)| < ∞, and there is m > 0

such that |b(x)|
a(x) ≤

∣∣∫ x
0
b
ads
∣∣m for x� 1.

(H)(1) says that b is a logistic-type growth rate function that plays important roles in especially

biological and ecological applications. (H)(2) assumes that a is degenerate at 0 and behaves like

a′(0)x near 0. In particular,
√
a vanishes and is singular at 0, causing the non-integrability of the

Gibbs density near 0 that leads to substantial difficulties in the analysis of (1.1). The assumptions

lim supx→∞ b(x) < 0 in (H)(1) and limx→∞
b2(x)
a(x) = ∞ in (H)(3) ensure the dissipativity of (1.1).

Other conditions in (H)(3) restricting the behaviours of a, b and the ratio b
a near∞ are mild technical

assumptions, and they are sufficiently general for applications (see Section 6). For the time being, it

is beneficial to keep in mind the typical example:

dx = x(1− x)dt+ ε
√
xdWt, x ∈ [0,∞),

and to point out that (1.1) has two unpleasant features: (i) the vector field vanishes on the boundary,

and (ii) the noise is degenerate, that are often kept away from in the study of randomly perturbed

dynamical systems and known to cause essential difficulties in the analysis.

1.1. Quasi-stationary distributions. Let Xε
t be the stochastic process on [0,∞) generated by

solutions of (1.1). For singular diffusion processes like (1.1), the strong uniqueness is ensured by the

well-known Yamada-Watanabe theory [80, 79]. Clearly, 0 is an absorbing state of Xε
t , and is often

called the extinction state in especially biology and ecology. Under (H), sample paths or trajectories

of Xε
t reach the extinction state 0 in finite time almost surely [10, 44]. This is mainly due to the

demographic noise, which drives a species to extinction when its density becomes low. Therefore,

the long-term behavior of Xε
t tells nothing interesting, driving us to look at the dynamics of Xε

t

before hitting 0. Since the ODE (1.2) may contain multiple (local) attractors in (0,∞), the sample

path large deviation principle (LDP) [31] indicates with probability almost one that trajectories of Xε
t

sojourn around these attractors for a long period before going to extinction, demonstrating fascinating

transient dynamics. As in [70, 45], we adopt a distribution/observable-based viewpoint and use quasi-

stationary distributions (QSDs) (see e.g. [62, 18]), being initial distributions on (0,∞) such that Xε
t
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conditioned on the non-extinction or survival up to time t is independent of t ≥ 0, to capture the

transient dynamics of Xε
t .

We mention that the theory of QSDs for absorbed Markov processes has a long history [68] and finds

numerous applications in especially population biology and chemical reactions (see e.g. [62, 18, 22]).

However, even for one-dimensional absorbed singular diffusion processes like (1.1), the fundamental

theory (i.e., the existence and uniqueness of QSDs and the exponential convergence to QSDs) is only

developed recently in the breakthrough [10] and subsequent works [56, 66, 40]. We refer the reader to

[11, 14, 15, 16, 41, 35, 30] and references therein for significant developments in higher dimensions.

Denote by T ε0 the extinction time of Xε
t , namely, the first time that Xε

t hits 0. More precisely,

T ε0 = inf {t ≥ 0 : Xε
t = 0} .

Then, Pεµ[T ε0 < ∞] = 1 as mentioned above (see also [44, Chapter VI, Section 3]), where Pεµ denotes

the law of Xε
t with initial distribution µ. The expectation associated with Pεµ is written as Eεµ. When

µ = δx is the Dirac measure at x, we simply write Pεδx and Eεδx as Pεx and Eεx, respectively.

Definition 1.1 (Quasi-stationary distribution). A Borel probability measure µε on (0,∞) is called a

quasi-stationary distribution (QSD) of Xε
t if

Pεµε [Xε
t ∈ B|t < T ε0 ] = µε(B), ∀t ≥ 0, B ∈ B((0,∞)),

where B((0,∞)) is the Borel σ-algebra of (0,∞).

It is known from the general theory of QSDs (see e.g. [62, 18]) that if µε is a QSD of Xε
t , then

there is a unique positive number λε,1 such that T ε0 ∼ exp(λε,1) provided Xε
0 ∼ µε. For this reason,

λε,1 is often referred to as the extinction rate.

We state in Proposition 2.1 the existence of a unique QSD µε of Xε
t with a positive and continuously

differentiable density uε. Moreover, the associated extinction rate λε,1 is exactly the principal or first

eigenvalue of −Lε, where Lε denotes an appropriate closed extension of the generator or diffusion

operator φ 7→ ε2

2 aφ
′′+ bφ′ of (1.1) (see Subsections 2.1 and 6.1 for details). In addition, the density uε

is a positive and integrable eigenfunction of the Fokker-Planck operator φ 7→ ε2

2 (aφ)′′−(bφ)′ associated

with the eigenvalue −λε,1 (see (2.3)).

In previous works [70, 45], the authors study the tightness and rough concentration estimates of

{µε}ε, as well as the exponential asymptotic of the first two eigenvalues of −Lε in order to characterize

the transient dynamics of Xε
t . The main purpose of the present paper is to investigate the multiscale

dynamics of Xε
t by establishing the asymptotic distribution of the normalized extinction time, the as-

ymptotic reciprocal relationship between the mean extinction time Eε•[T ε0 ] and the principal eigenvalue

λε,1, and a multiscale estimate of the dynamics of Xε
t . While information about the extinction time

and mean extinction time uncovers fundamental principles quantifying in particular the lifespan of in-

teresting dynamical behaviours combined and its natural connection with the principal eigenvalue, the

multiscale estimate characterizes the dynamics over different time scales. These are achieved mainly

by establishing the powerful sub-exponential LDP for the QSD µε or its density uε, which captures

very fine asymptotic or concentration properties of µε as ε → 0. That is, we rigorously justify the

Wentzel-Kramers-Brillouin (WKB) expansion (see e.g. [34, 2])

uε =
1

εa
e−

2
ε2
v
[
R0 + ε2R1 + · · ·+ ε2nRn + o(ε2n)

]
in (0,∞) (1.3)
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in the case n = 0, so that

uε =
Rε
εa
e−

2
ε2
v and Rε = R0 + o(1) in (0,∞),

where v is often called the quasi-potential function or rate function, and the sub-exponential term Rε
εa

is often referred to as the prefactor in physics literature. Determining the quasi-potential function

v via studying the limit limε→0
ε2

2 lnuε is the purpose of the LDP. We point out that the WKB

expansion (1.3) in the case n = 1 could fail (see Remark 1.1 (4) below for detailed comments). The

sub-exponential LDP for µε or uε is of independent interest and expected to have more far-reaching

consequences. Not only do results proven in this paper greatly improve many of those contained in

[70, 45], but also they widely broaden the scope of the study.

We state our main results in the following Subsections 1.2-1.4. In Subsection 1.5, we briefly discuss

about their applications to logistic diffusion processes.

1.2. Large deviation principle for QSDs. Consider the potential function:

V (x) = −
∫ x

0

b

a
ds, x ∈ (0,∞). (1.4)

We follow [60] to define valleys of V , which reveal certain geometric properties of V .

Definition 1.2. An open interval I ⊂ (0,∞) is called a valley (of V ) if it is one of the connected

components of the sublevel set {x ∈ (0,∞) : V (x) < ρ} and satisfies V (∂I) = ρ for some ρ ∈ R. We

say I ⊂ (0,∞) a d-valley if it is a valley of depth d, namely, supI V − infI V = d.

Set

d1 := sup
x∈(0,∞)

[
sup
(0,x)

V − V (x)

]
> 0, (1.5)

which is the depth of the deepest valleys of V . Since V (0+) = 0 and V (∞) =∞ by (H), there exist

finitely many d1-valleys and no d-valley with depth d > d1.

The LDP is proven when there exists a unique d1-valley, which is a generic case. Recall that uε is

the positive and continuously differentiable density of the unique QSD µε of Xε
t .

Theorem A. Assume (H) and the existence of a unique d1-valley (α, β). Then,

lim
ε→0

ε2

2
lnuε = −v locally uniformly in (0,∞),

where v is a locally Lipschitz viscosity solution of the following Hamilton-Jacobi equation

(v′)2 +
b

a
v′ = 0 in (0,∞), (1.6)

and is given as follows:

• if α = 0, then v = d1 + V ;

• if α > 0, then

v(x) =

d1 + V (x)− sup
(0,x)

V, x ∈ (0, α],

d1 + V (x)− V (α), x ∈ (α,∞).
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Obviously, in the case of a unique d1-valley (α, β) with α > 0, the quasi-potential function v

obtained in Theorem A is not continuously differentiable everywhere and could be non-differentiable

at many points depending on the geometry of V on (0, α). See Figure 1 for an illustration of V and

v in the case α > 0.

Figure 1. Illustration of a potential function V and the associated quasi-potential

function v in the case α > 0.

We point out that the Hamilton-Jacobi equation (HJE) (1.6) admits infinitely many locally Lips-

chitz viscosity solutions, giving rise to major difficulties in determining the quasi-potential function

v. It is the combined effect of the dynamics of (1.2) and the noise that allows us to uniquely select

the solution of (1.6), and therefore, determine v.

It turns out that the quasi-potential function v is a Lyapunov function for (1.2) in the sense of the

following result.

Corollary A. Assume (H) and the existence of a unique d1-valley. Let v be the quasi-potential

function as in Theorem A. Then, for any solution x(t) of (1.2) with x(0) ∈ (0,∞), the function

t 7→ v(x(t)) is non-increasing on [0,∞).

Proof. As v is locally Lipschitz by Theorem A, so is v(x(t)). It is known that d
dtv(x(t)) = v′(x(t))x′(t)

for a.e. t ∈ R with the understanding that v′(x(t))x′(t) = 0 when x′(t) = 0 even if v is not differentiable

at x(t). It follows from the equations satisfied by v and x(t) that for 0 ≤ t1 < t2 <∞,

v(x(t2))− v(x(t1)) =

∫ t2

t1

v′(x(t))x′(t)dt = −
∫ t2

t1

a(x(t)) [v′(x(t))]
2
dt ≤ 0,

completing the proof. �

Let v be as in Theorem A. To establish the sub-exponential asymptotic of uε as ε → 0 (or to

determine the prefactor in the WKB expansion of uε), we set

Rε := εauεe
2
ε2
v (1.7)

and examine the asymptotic of Rε as ε→ 0.

Assuming (H) and the existence of a unique d1-valley (α, β), we see that the set

M :=

{
x ∈ (α, β) : V (x) = min

(α,β)
V

}
is closed and contained in (α, β). Note thatM is exactly the set of global minima of V when α = 0, and

it may not be when α > 0. For fixed 0 < δ0 � 1 so thatMδ0 := {x ∈ (0,∞) : d(x,M) < δ0} ⊂ (α, β),
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we set

Mε :=

(
1

ε

∫
Mδ0

1

a
e−

2
ε2
vdx

)−1

. (1.8)

Clearly, by Laplace’s method and the expression of v given in Theorem A, the asymptotic of Mε is

determined by V |M, and hence, is independent of the choice of 0 < δ0 � 1.

Throughout this paper, for positive numbers Aε and Bε indexed by ε, we write

Aε ≈ε Bε, Aε .ε Bε and Aε &ε Bε

if limε→0
Aε
Bε

= 1, lim supε→0
Aε
Bε
≤ 1 and lim infε→0

Aε
Bε
≥ 1, respectively.

Theorem B. Assume (H) and the existence of a unique d1-valley (α, β).

(1) If α = 0, then Rε ≈ε Mε locally uniformly in (0,∞).

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then

Rε
ε
≈ε −

Mε

2V ′(0+)

√
−V ′′(α)

π
locally uniformly in (0, x0),

Rε(x) ≈ε
Mε

ε

√
−V ′′(α)

π

∫ x

0

e
2
ε2

[V−sup(0,x) V ]dz, x ∈ [x0, α),

Rε(x) ≈ε


Mε

2
, x = α,

Mε locally uniformly in x ∈ (α,∞),

where x0 ∈ (0, α] is the smallest positive zero of V .

To determine the asymptotic of Mε and obtain finer results about the asymptotic of Rε, we impose

the following stronger but generic assumption on M. Denote by N the set of positive integers.

(HV ) There are x1, . . . , xN ∈ (0,∞) for some N ∈ N such that M = {x1, . . . , xN} and b′(xi) < 0

for each i ∈ {1, . . . , N}.

It says that V |(α,β) attains its minimal value at only finitely many points and they are non-degenerate

equilibria of (1.2). Whenever (HV ) is assumed, we denote

M0 :=

(
N∑
i=1

1

a(xi)

√
π

V ′′(xi)

)−1

.

Under (HV ), we readily see from Laplace’s method that limε→0Mε = M0, leading to the next result.

Corollary B. Assume (H), the existence of a unique d1-valley (α, β) and (HV ).

(1) If α = 0, then limε→0Rε = M0 locally uniformly in (0,∞).

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then

lim
ε→0

Rε
ε

= − M0

2V ′(0+)

√
−V ′′(α)

π
locally uniformly in (0, x0),

Rε(x) ≈ε
M0

ε

√
−V ′′(α)

π

∫ x

0

e
2
ε2

[V−sup(0,x) V ]dz, x ∈ [x0, α),

lim
ε→0

Rε(x) =


M0

2
, x = α,

M0 locally uniformly in x ∈ (α,∞),



8 WEIWEI QI, ZHONGWEI SHEN, AND YINGFEI YI

where x0 ∈ (0, α] is the smallest positive zero of V .

Remark 1.1. We make some comments about Theorem B (2) and Corollary B (2) regarding additional

assumptions and the asymptotic of Rε in (0, α).

(1) As (α, β) is the unique d1-valley, there must hold that V (α) ≥ V in (0, α) with strict inequality

in (0, δ) for some δ ∈ (0, α). If there is x∗ ∈ (0, α) such that V (α) = V (x∗), we need to impose

additional conditions on V at such a x∗ in order to determine the asymptotic. While it is

certainly doable, the statement would be messy. That is why we assume V (α) > V in (0, α).

(2) The condition b′(α) > 0 is not a strong restriction, and can be replaced by a higher order

derivative condition at α if a and b, so V , have enough differentiability near α.

(3) Note that V (α) ≥ 0. When x0 = α (if and only if V (α) = 0), the asymptotic of Rε as ε→ 0 is

explicitly characterized. When x0 < α (if and only if V (α) > 0), it is theoretically possible to

establish the explicit asymptotic of Rε(x) for x ∈ [x0, α) by means of Laplace’s method. But,

it is hard to state the result in a concise way because the asymptotic of
∫ x

0
e

2
ε2

[V−sup(0,x) V ]dz

for x ∈ [x0, α) depends heavily on the geometry of V on [x0, α). As the explicit asymptotic is

not of much use, we do not pursue here.

(4) Setting R 1
2

:= − M0

2V ′(0+)

√
−V ′′(α)

π , we see that Rε = εR 1
2

+ o(ε) in (0, x0), where o(ε) is locally

uniformly in (0, x0). Therefore,

uε =
1

εa
e−

2
ε2
v
[
εR 1

2
+ o(ε)

]
in (0, x0),

giving the “half-order” WKB expansion of uε, and hence, saying in particular the failure of

the first-order WKB expansion of uε (i.e., (1.3) in the case n = 1) in (0, x0).

It should be pointed out that establishing the sub-exponential LDP for stationary distributions or

QSDs is generally a very challenging problem as it relies heavily on the dynamical structure of the

unperturbed system, and the mathematical treatment often needs to solve badly behaved Hamilton-

Jacobi equations (HJEs) and singularly perturbed equations. To be more specific and for clarity, let

f be a smooth vector field on an open domain U ⊂ Rd generating the flow ϕt and consider

dx = f(x)dt+ εdWt in U . (1.9)

Suppose uε is the smooth density of a stationary distribution or QSD in U of (1.9). Then, there is

λε ≥ 0 such that

ε2

2
∆uε −∇ · (fuε) = −λεuε in U . (1.10)

Assume further that U is contained in the basin of attraction of a normally hyperbolic and attractive

compact invariant manifold M of ϕt with dimension m ≤ d − 1. Then, λε = o(e−
γ

ε2 ) for some

γ > 0. We look for v (the quasi-potential function) and Rε such that uε = Rε
εd−m

e−
2
ε2
v and Rε = O(1).

Inserting this ansatz into (1.10), we find that v satisfies the HJE

|∇v|2 + f · ∇v = 0, (1.11)

and Rε solves the following singularly perturbed equation

ε2

2
∆Rε − (f + 2∇v) · ∇Rε − (∇ · f − λε + ∆v)Rε = 0. (1.12)

There are essential difficulties in solving (1.11) and (1.12).
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(i) The quasi-potential function v, if exists, must be a viscosity solution of the HJE (1.11), which

however admits infinitely many viscosity solutions. Therefore, one has to determine v from

a different perspective. This often requires additional dynamical assumptions on M, say, ϕt

being transitive and uniquely ergodic on M.

(ii) Observe that v ∈ C2(U) is highly expected to studying Rε, but this is not the case in general

even if M is a singleton set (see [21]). The regularity in a small neighborhood O of M is

possible thanks to the dynamical structure of ϕt in O.

(iii) Establishing Rε = O(1) in O is greatly challenged by the sign-indefiniteness of coefficients. In

fact, under the additional dynamical assumption mentioned in (i), ∇v vanishes onM and ∆v

only vanishes alongM. Hence, components of f + 2∇v and the term ∇· f + ∆v are generally

sign-indefinite, causing substantial troubles in deriving uniform-in-ε estimates for Rε.

Given these difficulties, the sub-exponential LDP for stationary distributions or QSDs is only known

when ϕt has very simple dynamics, saying that M is a linearly stable equilibrium of the flow ϕt, and

U is contained in the basin of attraction of M.

The situation is certainly much more complex ifM is just a local or global attractor, or the additive

noise in (1.9) is replaced by a multiplicative noise that becomes degenerate and singular in part of

∂U . Unfortunately, we run into such issues. In fact, in our case, M is just the global attractor of the

unperturbed ODE (1.2) in (0,∞) (generally consisting of equilibria and their connecting orbits) and

the noise is singular and degenerate at 0.

Now, we mention relevant works about the LDP for stationary distributions and QSDs, and compare

our approach with those contained in literature. For stationary distributions of randomly perturbed

dynamical systems of the form

dx = f(x)dt+ εσ(x)dWt, x ∈ Rd,

where the unperturbed ODE ẋ = f(x) admits a non-degenerate globally asymptotically stable equi-

librium and the diffusion matrix σσ> is uniformly positive definite, the LDP as in Theorem A has

been studied in [31, 72], the sub-exponential LDP as in Theorem B has been established in [71, 21, 7],

and the WKB asymptotic expansion in a small neighbourhood of the equilibrium has been justified

in [63, 64]. All of them build on the sample path LDP due to Freidlin and Wentzell [31], except the

work [7] in which the authors tackle the problem from a control theoretic viewpoint and are able

to prove the LDP for vector fields admitting finitely many asymptotically stable equilibria and no

other ω-limit sets. In [72], the author replaces the positive definiteness of σσ> by some conditions

on the controlled trajectories (see the condition (A4) in [72, Theorem 1] for details), and therefore,

are capable of treating some degenerate cases. In [58], the authors study a family of continuous-time

symmetric random walks on the unit circle and establish the LDP for stationary distributions by

means of the Aubry-Mather theory (see e.g. [6, 29]).

As for the LDP for QSDs, there exist a few results [60, 12, 9, 17]. Consider the following reversible

diffusion processes or overdamped Langevin equation:

dx = −∇f(x)dt+ εdWt, x ∈ Rd,

which is restricted on a smooth, open, bounded and connected domain Ω and killed on its boundary

∂Ω. The density of the unique QSD is given by φεγε∫
Ω
φεγεdx

in Ω, where γε = e
− 2
ε2
f∫

Ω
e
− 2
ε2
f
dx

and φε > 0 in

Ω is the principal eigenfunction of the generator and is normalized to satisfy
∫

Ω
φ2
εγεdx = 1. In [60],

assuming the existence of a unique deepest valley D contained in Ω, the author shows by a functional
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analytic approach that limε→0 φε = 1 locally uniformly in D, leading to the sub-exponential LDP for

the QSD in D. More precise asymptotic of the principal eigenfunction φε in a neighbourhood of a non-

degenerate local minimal point of the potential function f is obtained in [9] by a potential theoretic

approach exploiting the deep connection between capacities and exit times. Our sub-exponential LDP

for uε is relevant to the ones in [12, 17], where one-dimensional re-scaled absorbed birth-and-death

processes whose diffusion approximation has the form (1.1) are investigated. In [12], the LDP for the

QSD is established. The sub-exponential LDP is obtained in [17] only when the mean field ODE has

a unique asymptotically stable equilibrium. Both works heavily use the recursive formula satisfied

by the QSD. Therefore, not only can our sub-exponential LDP for uε be regarded as an extension

and improvement of those contained in [12, 17] as we allow the ODE (1.2) to have multiple stable

equilibria, but also it can be seen as a global version of those contained in [60]. To the best of our

knowledge, this is the first time that the sub-exponential LDP for QSDs is established for absorbed

singular diffusion processes like (1.1).

Our two-step approach is different from those contained in literature. The first step studying

the vanishing viscosity limit of the logarithmic transform vε := − ε
2

2 ln(auε) is somewhat standard.

Establishing the local uniform boundedness of {vε}ε and {v′ε}ε, we find candidates for the quasi-

potential function who are viscosity solutions of the HJE (1.6). Previous studies on the tightness and

rough concentration estimates of QSDs [70] give basic properties of the candidates (see Section 3 for

details). Due to the non-uniqueness of viscosity solutions of (1.6) (although some properties of the

candidates have been established), an approach to the determination of the quasi-potential function

is needed. This is the purpose of the second step. In literature, methods based on the Freidlin-

Wentzell theory, control theory, Aubry-Mather theory, etc. have been used to achieve this goal as

mentioned earlier. However, none of them can be easily adapted to treat out problem because we aim

at establishing the sub-exponential LDP in the whole half line (0,∞), where the unperturbed ODE

(1.2) could admit all types of equilibria. We tackle the problem from a completely different perspective

that takes full advantage of the one-dimensional structure and avoids studying the singularly perturbed

equation (1.12). More precisely, exploring the properties of uε near 0 and ∞, we are able to establish

integral identities for uε, vε and v′ε (see Proposition 4.1 for details). Elementary analysis based on

these identities and Laplace’s method then allows us to establish the LDP as stated in Theorems A

and B.

As byproducts of the proof and consequences of Theorems A and B, we obtain new results about

uniform-in-ε estimates of µε or uε near 0 and ∞, the sub-exponential asymptotic of the principal

eigenvalue λε,1, and the asymptotic of the positive eigenfunction φε,1 of −Lε corresponding to the

principal eigenvalue λε,1 and satisfying the normalization ‖φε,1‖L2(uGε ) = 1, where uGε := 1
ae
− 2
ε2
V is

the non-integrable Gibbs density. Note from (2.2) and Proposition 2.1 that uε and φε,1 are related by

uε =
φε,1u

G
ε

‖φε,1‖L1(uGε )

.

Theorem C. Assume (H). The following hold.

(1) There exist L� 1, C > 0 and 0 < ε∗ � 1 such that

uε ≤
C

a
3
4

e
1
ε2

∫ •
L
b
ads in [L,∞), ∀ε ∈ (0, ε∗).

(2) For each 0 < δ � 1, there are 0 < xδ � 1 and 0 < εδ � 1 such that

e−
2
ε2

(d1+δ) ≤ uε ≤ e−
2
ε2

(d1−δ) in (0, xδ), ∀ε ∈ (0, εδ).
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(3) Suppose in addition the existence of a unique d1-valley (α, β).

(i) If α = 0, then ελε,1e
2
ε2
d1 ≈ε b′(0)

a′(0)Mε and

lim
ε→0
‖φε,1‖L1(uGε )φε,1 = 1 locally uniformly in (0,∞).

(ii) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then λε,1e
2
ε2
d1 ≈ε Mε

2

√
−V ′′(α)

π and

lim
ε→0
‖φε,1‖L1(uGε )φε,1(x) =


0, uniformly in x ∈ (0, α̃) for each α̃ ∈ (0, α),
1
2 , x = α,

1, locally uniformly in x ∈ (α,∞).

Corollary C. Assume (H), the existence of a unique d1-valley (α, β) and (HV ).

(1) If α = 0, then limε→0 ελε,1e
2
ε2
d1 = b′(0)

a′(0)M0.

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then limε→0 λε,1e
2
ε2
d1 = M0

2

√
−V ′′(α)

π .

Conclusions like those in Theorems A, B and C (3) have fruitful and far-reaching consequences,

and have profound influences on the study of randomly perturbed dynamical systems. For instance,

in [21], the author used the sub-exponential LDP for stationary measures to rigorously justify an

important formula concerning the asymptotic exit distribution originally derived in [61]. In the works

[23, 24, 25] (see [55] for an exposition) studying exit events and the Eyring-Kramers formula on the

basis of QSDs for the overdamped Langevin equation, the sub-exponential asymptotic of the principal

eigenvalue plays a significant role in computing the asymptotic of transition rates and determining

the asymptotic exit distribution.

Here, we use them to establish the asymptotic distribution of the normalized extinction time,

the asymptotic reciprocal relationship between the mean extinction time Eε•[T ε0 ] and the principal

eigenvalue λε,1, and the multiscale estimate of the dynamics of Xε
t . These results greatly benefit from

the limit limε→0 ‖φε,1‖L1(uGε )φε,1 in Theorem C (3), which does not require (HV ).

We introduce some notations that are frequently used in the sequel. Let P((0,∞)) be the set of

Borel probability measures on (0,∞). In the case that (α, β) is the unique d1-valley with α > 0, we

set for µ ∈ P((0,∞)),

pµ :=
1

2
µ({α}) + µ((α,∞)).

1.3. Asymptotic reciprocal relationship. We state results concerning the asymptotic distribution

of the normalized extinction time and the asymptotic reciprocal relationship between Eε•[T ε0 ] and λε,1,

generalizing respectively the fact that T ε0 ∼ exp(λε,1) if Xε
0 ∼ µε, and its consequence λε,1Eεµε [T

ε
0 ] = 1.

Theorem D. Assume (H) and the existence of a unique d1-valley (α, β). Let µ ∈ P((0,∞)) have

compact support in (0,∞).

(1) If α = 0, then limε→0 Pεµ[λε,1T
ε
0 > t] = e−t for all t > 0, and limε→0 λε,1Eεµ[T ε0 ] = 1. In

particular, limε→0 Pεµ
[

T ε0
Eεµ[T ε0 ] > t

]
= e−t for all t > 0.

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then limε→0 Pεµ[λε,1T
ε
0 > t] = pµe

−t for all t > 0,

and limε→0 λε,1Eεµ[T ε0 ] = pµ. In particular, if pµ > 0, then limε→0 Pεµ
[

T ε0
Eεµ[T ε0 ] > t

]
= pµe

−pµt

for all t > 0.
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Theorem D shows that as ε → 0, the normalized extinction time
T ε0

Eεµ[T ε0 ] weakly converges to an

exponential random variable with parameter 1 when α = 0 and pµ when α > 0. It also uncovers a

fundamental principle connecting the mean extinction time Eε•[T ε0 ] and the principal eigenvalue λε,1.

One of its importance is that it allows using information about one of them to analyze the other

one. In particular, given Theorem D and the asymptotic of λε,1 in Theorem C, we readily obtain the

asymptotic of Eε•[T ε0 ] in terms of the quantity Mε. More precise asymptotic can be derived under the

additional assumption (HV ).

Corollary D. Assume (H), the existence of a unique d1-valley (α, β) and (HV ). Let µ ∈ P((0,∞))

have compact support in (0,∞).

(1) If α = 0, then Eεµ[T ε0 ] ≈ε εa′(0)
M0b′(0)e

2
ε2
d1 .

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then Eεµ[T ε0 ] ≈ε 2pµ
M0

√
π

−V ′′(α)e
2
ε2
d1 provided

pµ > 0.

The mean extinction time E•[T ε0 ] is a special mean exit time, whose asymptotic reciprocal rela-

tionship with the principal eigenvalue is widely acknowledged and established in many situations (see

e.g. [59, 61, 20, 8, 9, 39, 42, 53]). In [59, 61], such a relationship is formally derived by means of

the asymptotic expansion. The first rigorous proof is provided in [20] dealing with randomly per-

turbed dynamical systems exiting from a bounded domain containing a unique asymptotically stable

equilibrium. In the case that V has multiple wells, the mean extinction time is closely related to

the transition rate among local minima. The sub-exponential asymptotic of the transition rate, of-

ten called the Eyring-Kramers formula (or law), and the principal eigenvalue are proven for regular

reversible diffusion processes in [8, 9, 39, 42, 53], leading directly to their asymptotic reciprocal rela-

tionship. We refer the reader to surveys [5, 55] for more details. Very recently, the Eyring-Kramers

formula is justified in [51, 54, 57] for irreversible diffusion processes having the Gibbs measure as the

unique stationary measure, and in [52] for irreversible random walks in a potential field.

1.4. Multiscale estimate. We introduce some notations before stating the multiscale estimate of

the dynamics of Xε
t . For d > 0, let N(d) be the number of d-valleys. It is easy to see that d 7→ N(d)

is a non-negative, non-increasing and left-continuous function on (0,∞). For each i ∈ N, we define

di := inf {d > 0 : N(d) < i} . (1.13)

Since V (0+) = 0 and V ′(x) > 0 for x � 1, for each i ∈ N there always exists d ∈ (0,∞) such

that N(d) < i, and hence, di is well-defined. Intuitively, di, i ∈ N are the points where N(d) has

jump discontinuities. This definition of d1 coincides with the one given in (1.5). Clearly, d1 > 0 and

d1 ≥ d2 ≥ d3 ≥ · · · ≥ 0. Moreover, if there is only one d1-valley (the generic case that we focus on),

then d1 > d2. It is shown in Lemma 2.3 that di is exactly the exponential asymptotic rate of the i-th

eigenvalue λε,i of −Lε.
Our result regarding the multiscale estimate of the dynamics of Xε

t is stated as follows. Denote by

‖ · ‖TV the total variation distance.

Theorem E. Assume (H) and the existence of a unique d1-valley (α, β). If k ∈ N is such that d1 >

d2 > · · · > dk > dk+1, then for each compact K ⊂ (0,∞), there are positive constants γ = γ(k,K),

C = C(k,K) and ε∗ = ε∗(k,K) such that the following hold.
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(1) If α = 0, then

sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥∥∥∥Pεµ[Xε
t ∈ •]−

[
k∑
i=1

e−λε,it〈µ, αε,i〉µε,i +

(
1−

k∑
i=1

e−λε,it〈µ, αε,i〉

)
δ0

]∥∥∥∥∥
TV

≤ e
γ

ε2
−λε,k+1t, ∀t > 2 and 0 < ε < ε∗,

where αε,i := 〈1, φε,i〉L2(uGε )φε,i, 〈µ, αε,i〉 :=
∫∞

0
αε,idµ satisfies sup0<ε<ε∗ |〈µ, αε,i〉| ≤ C,

and µε,i is defined by dµε,i :=
φε,iu

G
ε

〈1,φε,i〉L2(uGε )
dx and satisfies sup0<ε<ε∗ ‖〈µ, αε,i〉µε,i‖TV ≤ C.

Moreover, µε,1 = µε and limε→0〈µ, αε,1〉 = 1.

(2) If α > 0, V (α) > V in (0, α) and b′(α) > 0, then the same conclusion as in (1) holds except

limε→0〈µ, αε,1〉 = pµ.

Since d1 > d2 under (H), we immediately have the following result that is of particular interest.

Corollary E. Assume (H) and the existence of a unique d1-valley (α, β). Then for each compact

K ⊂ (0,∞), there are positive constants γ = γ(K) and ε∗ = ε∗(K) such that the following hold.

(1) If α = 0, then

sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥Pεµ[Xε
t ∈ •]−

[
e−λε,1t〈µ, αε,1〉µε +

(
1− e−λε,1t〈µ, αε,1〉

)
δ0
]∥∥
TV

≤ e
γ

ε2
−λε,2t, ∀t > 2 and 0 < ε < ε∗,

where αε,1 := ‖φε,1‖L1(uGε )φε,1 and 〈µ, αε,1〉 :=
∫∞

0
αε,1dµ satisfies limε→0〈µ, αε,1〉 = 1.

(2) If α > 0 and V (α) > V in (0, α) and b′(α) > 0, then the same conclusion as in (1) holds

except limε→0〈µ, αε,1〉 = pµ.

Remark 1.2. We make some comments about Theorem E and Corollary E.

• Theorem E builds on the eigenfunction expansion of the semigroup associated with Xε
t before

it reaches the extinction state 0 (see Lemma 2.1). The primary achievements of this theo-

rem include the tail estimate e
γ

ε2
−λε,k+1t, uniform-in-ε bounds of the coefficients 〈µ, αε,i〉 and

〈µ, αε,i〉µε,i, and the limit limε→0〈µ, αε,1〉, making the dynamical estimate meaningful. To

obtain these results, it is necessary to extract information from the expansion and involved

eigenfunctions, which only have natural meanings in the weighted space L2(uGε ). The degener-

acy and singularity of the noise results in the non-integrable singularity of the weight uGε near

0, complicating the situation.

• We comment on the definition of µε,i for i ≥ 2 in Theorem E. If 〈1, φε,i〉L2(uGε ) 6= 0, then

µε,i is a signed measure satisfying µε,i((0,∞)) = 1. Otherwise, we can set µε,i to be any fixed

measure satisfying µε,i((0,∞)) = 1 since 〈µ, αε,i〉 = 0. We choose to use µε,i for that the

conclusion then quantifies at least formally the total variation distance between Pεµ[Xε
t ∈ •]

and the convex combination of the measures µε,i, i ∈ {1, . . . , k} and δ0.

• Lemma 2.3 and conditions in Theorem E ensure that the eigenvalues λε,i, i = 1, . . . , k are

exponentially small, and λε,i is exponentially smaller than λε,i+1 for i = 1, . . . , k. The recip-

rocal of these eigenvalues gives rise to multiple time scales, which together with the estimate

established in Theorem E characterize the multiscale dynamics of Xε
t governed by the measures

µε,i, i ∈ {1, . . . , k} and δ0.
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• The QSD µε plays a special role in characterizing the dynamics of Xε
t . Whenever involved

(depending on the initial distribution in the case α > 0), Xε
t spends most of the time with it

before reaching the extinction. The limiting behavior of αε,1 (addressed in Theorem C) allows

us to describe this in a more precise way as follows:

– if t is such that t� 1
λε,1

, then Pεµ[Xε
t ∈ •] ∼ δ0;

– if t is such that 1
ε2λε,2

� t � 1
λε,1

, then Pεµ[Xε
t ∈ •] ∼ µε under conditions in (1),

and Pεµ[Xε
t ∈ •] ∼ pµµε + (1− pµ) δ0 under conditions in (2), that is, the probability

that Xε
t experiences transient dynamics captured by µε during the period

[
1

ε2λε,2
, 1
λε,1

]
is

approximately pµ.

It is interesting to see that under the conditions in Corollary E (2), the QSD µε plays no

role in describing the dynamics of Xε
t if the initial distribution µ is supported in (0, α) so that

pµ = 0. The reason is that trajectories are more likely to exit from (0, α) through 0 instead

of α, that is, limε→0 Pεµ
[
T ε(0,α) = 0

]
= 1, where T ε(0,α) := inf{t ≥ 0 : Xε

t /∈ (0, α)} is the first

time that Xε
t exits from (0, α), while the QSD µε is mainly concentrated in a neighborhood of

the set of global minima of V |(α,β) (see Theorem A). This actually is a delicate issue when

V (α) = 0 (= V (0+)), in which case, (0, α) is a valley. Exiting from (0, α) through 0 is then

a result of the fact that V ′(0+) < 0 = V ′(α).

Theorem E (1) or Corollary E (1) covers a fundamentally important case in biology and ecology

that b is a standard logistic growth rate function, namely, b(x) = b1x − b2x2 for some b1, b2 > 0. In

this case, V is a single-well potential function with the unique global minimal point non-degenerate,

and the second eigenvalue λε,2 satisfies limε→0 λε,2 = b1 (see [45, Theorem B]). The solution Xε
t

conditioned on survival [t < T ε0 ] converges exponentially fast with rate λε,2−λε,1(≈ε λε,2) to the QSD

µε as t→∞. Therefore, Xε
t stays very close to µε over a time scale that the conditioned process has

been staying with the QSD and most trajectories are alive. Such dynamics with sharp time scales

is stated in the next result for a vector field that is slightly more general than the standard logistic

growth rate function.

Recall that a function w : [0,∞) → [0,∞) is called a modulus of continuity if w is increasing and

continuous at 0 with w(0) = 0. For any x0 ∈ (0,∞), we denote by w[x0] the set of all continuous

functions f : [0,∞) → R having w as the modulus of continuity at x0, namely, |f(x) − f(x0)| ≤
w(|x− x0|) for all x in a neighbourhood of x0.

Theorem F. Assume (H), {x ∈ (0,∞) : b(x) = 0} = {x∗} and b′(x∗) < 0. Let w : [0,∞) → [0,∞)

be a modulus of continuity. Then, for each compact K ⊂ (0,∞), M > 0 and sequences {tε}ε, {tε}ε in

(0,∞) satisfying tε < tε for each ε, limε→0 tε =∞ and limε→0
tε
ε e
− 2
ε2

∫ x∗
0

b
ads = 0, there holds

lim
ε→0

sup
supp(µ)⊂K

sup
tε≤t≤t̄ε

sup
f∈w[x∗]
‖f‖∞≤M

∣∣∣∣Eεµ[f(Xε
t )]−

∫ ∞
0

fdµε

∣∣∣∣ = 0.

We highlight that time scales tε and tε appearing in Theorem F are sharp in the following sense.

Since the spectral gap λε,2 − λε,1 satisfies limε→0(λε,2 − λε,1) = b1 > 0 (see [45, Theorem B]), a

time scale tε satisfying limε→0 tε = ∞ is required to observe the QSD µε. Recall that λε,1 is the

extinction rate and its reciprocal 1
λε,1

is essentially the mean extinction time (see Theorem D (1)).

Under conditions on the vector field b in Theorem F, we see from Corollary C (1) that λε,1 ≈ε
C
ε e
− 2
ε2

∫ x∗
0

b
ads, where C = b′(0)

a′(0)

√
− b(x∗)
πa(x∗)

. If the time scale tε is such that limε→0 tελε = 0 (equivalent
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to limε→0
tε
ε e
− 2
ε2

∫ x∗
0

b
ads = 0 thanks to the asymptotic of λε,1), then most trajectories of Xε

t are alive

by tε.

1.5. Applications. Results in Subsections 1.2-1.4 are applied to logistic diffusion processes:

dx = (b1x− b2x2)dt+ ε
√
a1x+ a2x2dWt, x ∈ [0,∞), (1.14)

where 0 < ε � 1 is a parameter, b1, b2 and a1 are positive constants, and a2 ≥ 0. Such an equation

arises for instance from chemical reactions and population dynamics and can be derived as diffusion

approximations of relevant birth-and-death processes (BDPs). See Section 6 for details.

On the basis of Theorems A-F, we obtain in particular the following.

• The unique QSD of (1.14) tends to concentrate on the Dirac measure at b1
b2

as ε → 0 in

a Gaussian manner under both the total variation distance and Wasserstein distances (see

Theorem 6.1 (6)-(7)).

• As aforementioned, (1.14) can be derived as diffusion approximations of BDPs, which however

are valid only over finite time intervals in general. In order for the validity over longer time

intervals, it is necessary to verify the diffusion approximation for special dynamical states,

especially the QSD in the current context. This is shown to be the case in Theorem 6.2 for a

class of logistic BDPs.

• We resolve Keizer’s paradox [46] regarding the long-term dynamical disagreement between

deterministic and stochastic models modelling the same process. In terms of (1.14) and its

unperturbed ODE ẋ = b1x−b2x2, we show their dynamical agreement from observables’ point

of view over a “maximal” time horizon. Details are given in Remark 6.1.

1.6. Organization of the rest of the paper. The rest of the paper is organized as follows. In Sec-

tion 2, we collect some preliminary results, including diffusion approximations, spectral theory of Lε,
Liouville-type transform of Lε and the resulting semi-classical Schrödinger operators, and concentra-

tion estimates for QSDs. As mentioned earlier, our approach to establishing the sub-exponential

LDP for {µε} consists of two steps. The first step addressing the vanishing viscosity limits of

vε = − ε
2

2 ln(auε) is contained in Section 3. The second step including proving the crucial integral

identities for uε, vε and v′ε and completing the proof (of Theorems A, B and C) is presented in Sec-

tion 4. Section 5 is devoted to the multiscale dynamics of Xε
t . In Subsection 5.1, we establish the

asymptotic distribution of the normalized extinction time and the asymptotic reciprocal relationship

between Eε•[T ε0 ] and λε,1. In particular, we prove Theorem D. In Subsection 5.2, we establish the mul-

tiscale estimate of the dynamics of Xε
t and prove Theorems E and F. Applications to logistic diffusion

processes are discussed in Section 6.

2. Preliminary

In this section, we recall and establish some preliminary results for later purposes. We assume (H)

throughout this section. Subsection 2.1 is devoted to the rigorous formalism of the generator Lε of Xε
t ,

the spectral theory of Lε and the stochastic representation and dynamics of the semigroup generated

by Lε. In Subsection 2.2, we derive the Schrödinger operator that is unitarily equivalent to Lε. In

Subsection 2.3, we present basic results about QSDs of Xε
t including the existence and uniqueness,

previous concentration estimates away from ∞ and new ones near ∞.
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2.1. Generator, spectral theory and dynamics. In this subsection, we discuss the spectral theory

of the generator of Xε
t , and the dynamics of the Markov semigroup associated with Xε

t .

Consider the symmetric quadratic form Eε : C∞0 ((0,∞))× C∞0 ((0,∞))→ R defined by

Eε(φ, ψ) =
ε2

2

∫ ∞
0

aφ′ψ′uGε dx, ∀φ, ψ ∈ C∞0 ((0,∞)),

where uGε := 1
ae
− 2
ε2
V is the non-integrable Gibbs density and the potential function V is defined in

(1.4). That is, uGε is the unique (up to constant multiplication) solution to ε2

2 (au)′− bu = 0 in (0,∞).

In particular, it solves the stationary Fokker-Planck equation

ε2

2
(au)′′ − (bu)′ = 0 in (0,∞).

The quadratic form Eε is Markovian and closable [32]. Its smallest closed extension, again denoted by

Eε, is a Dirichlet form with domain D(Eε) being the closure of C∞0 ((0,∞)) under the norm ‖φ‖2D(Eε) :=

‖φ‖2L2(uGε ) + Eε(φ, φ), where L2(uGε ) := L2((0,∞), uGε dx). Denote by Lε the non-positive self-adjoint

operator in the weighted space L2(uGε ) associated with Eε such that

Eε(φ, ψ) = 〈−Lεφ, ψ〉L2(uGε ), ∀φ ∈ D(Lε), ψ ∈ D(Eε),

where

D(Lε) :=
{
u ∈ D(Eε) : ∃f ∈ L2(uGε ) s.t. Eε(u, φ) = 〈f, φ〉L2(uGε ),∀φ ∈ D(Eε)

}
is the domain of Lε and contained in particular in L2(uGε ). Note that

Lεφ =
ε2

2
aφ′′ + bφ′ for φ ∈ C∞0 ((0,∞)),

that is, Lε is a self-adjoint extension of the generator of (1.1).

We present the following results about the spectrum of −Lε and the semigroup generated by Lε.

Lemma 2.1 ([10, 45]). For each 0 < ε� 1, the following hold.

(1) −Lε has purely discrete spectrum contained in (0,∞) and listed as follows:

λε,1 < λε,2 < λε,3 < · · · → ∞.

(2) Each λε,i is associated with a unique eigenfunction φε,i ∈ D(Lε)∩L1(uGε )∩C3((0,∞)) subject

to the normalization ‖φε,i‖L2(uGε ) = 1. Moreover, φε,1 is positive on (0,∞).

(3) The set {φε,i, i ∈ N} is an orthonormal basis of L2(uGε ).

(4) Lε generates a positive analytic semigroup (P εt )t≥0 of contractions on L2(uGε ) having the sto-

chastic representation P εt f = Eε•[f(Xε
t )1t<T ε0 ] for all f ∈ L2(uGε ) ∩ Cb([0,∞)) and t ≥ 0.

(5) For each k ∈ N, f ∈ L2(uGε ) and t > 0,

P εt f =

k−1∑
i=1

e−λε,it〈f, φε,i〉L2(uGε )φε,i + P εtQ
ε
kf, (2.1)

where Qεk is the spectral projection of Lε corresponding to the eigenvalues {−λε,j}j≥k. More-

over,

‖P εtQεk‖L2(uGε )→L2(uGε ) ≤ e−λε,kt, t ≥ 0.

(6) For each f ∈ Cb([0,∞)), the stochastic representation in (4) and (2.1) hold pointwisely.

The next result concerning L∞ estimates of (P εt )t≥0 is proven in [45].
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Lemma 2.2 ([45, Lemma 6.1]). For each k ∈ N, the following statements hold.

(1) There exists C > 0 such that for each 0 < ε� 1,

|P εtQεkf | ≤
C

ε
a

1
4 e

V
ε2 e−λε,kt‖f‖L2(uGε ) in (0,∞), ∀f ∈ L2(uGε ) and t > 1.

(2) There exists γ > 0 such that for each 0 < ε� 1,

|P εtQεkf | ≤ a
1
4 e

V+γ

ε2 e−λε,kt‖f‖∞ in (0,∞), ∀f ∈ Cb([0,∞)) and t > 2.

The following result regarding the exponential asymptotic of the eigenvalues λε,i, i ∈ N is proven

in [45]. Recall from (1.13) the definition of di, i ∈ N.

Lemma 2.3 ([45, Theorem A]). For each i ∈ N, limε→0+
ε2

2 lnλε,i = −di.

We point out that the notations ri, i ∈ N used in [45] correspond to 2di, i ∈ N used in the present

paper. Since d1 > 0, Lemma 2.3 says that λε,1 is exponentially small in ε.

2.2. Semi-classical Schrödinger operators. We derive the semi-classical Schrödinger operator

that is unitarily equivalent to the generator Lε of Xε
t . It plays important technical roles that we

comment at the end of this subsection.

Consider the transform y = ξ(x) =
∫ x

0
1√
a
dz for x ∈ (0,∞). Assumptions on a ensure that ξ′ > 0

on (0,∞) and ξ(0+) = 0. Set y∞ := ξ(∞) ∈ (0,∞]. In particular, ξ : (0,∞) → (0, y∞) is invertible.

This transform converts the SDE (1.1) to the following SDE with constant noise coefficient:

dy = −qε(y)dt+ εdWt, y ∈ [0, y∞),

where qε = −(Lεξ) ◦ ξ−1.

Let vGε (y) :=
uGε (x)
ξ′(x) =

√
a(x)uGε (x) and set L2(vGε ) := L2((0, y∞), vGε dy). Define

LYε :=
ε2

2

d2

dy2
− qε(y)

d

dy
in L2(vGε ).

It is not hard to check that UεLε = LYε Uε, where Uε : L2(uGε ) → L2(vGε ), f 7→ f ◦ ξ−1 is a unitary

transform. Consider the semi-classical Schrödinger operator

LSε :=
ε2

2

d2

dy2
− 1

2

[
q2
ε (y)

ε2
− q′ε(y)

]
in L2((0, y∞)).

It is easy to verify that ŨεLYε = LSε Ũε, where Ũε : L2(vε) → L2((0, y∞)), f → f
√
vGε is a unitary

transform. Hence, ŨεUεLε = LSε ŨεUε, that is, Lε is unitarily equivalent to LSε .

We include the following commutative diagram for readers’ convenience:

L2(uGε ) L2(vGε ) L2((0, y∞))

L2(uGε ) L2(vGε ) L2((0, y∞))

Uε

Lε

Ũε

LYε LSε
Uε Ũε

We mention that the rigorous definition of LYε and LSε can be done using quadratic forms as it is done

for Lε in Subsection 2.1.

Denote by Vε the potential of the Schrödinger operator LSε , namely, Vε = 1
2

(
q2
ε

ε2 − q
′
ε

)
.

Lemma 2.4. The following hold.
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(1) There exist C1 > 0 and y1 ∈ (0, y∞) such that

Vε ≥
C1ε

2

ξ−1
in (0, y1], ∀0 < ε� 1 and inf

ε
inf

(0,y1]
Vε > 0;

(2) For each y2 ∈ (0, y∞) with ξ−1(y2)� 1, there exists C2 = C2(y2) > 0 such that

Vε ≥
C2

ε2
b2 ◦ ξ−1

a ◦ ξ−1
in [y2, y∞), ∀0 < ε� 1.

(3) The family {Vε}ε is uniformly lower bounded, that is, infε min(0,y∞) Vε > −∞.

Proof. The proof of this lemma is given in [45, Lemma 2.2]. The only difference is that in (2), we

fixed a y2 ∈ (0, y∞) there, while we do not fix it here. �

Remark 2.1. The semi-classical Schrödinger operator LSε plays important technical roles. Due to its

unitary equivalence to Lε, properties of LSε can be easily passed on to that of Lε. These include in

particular the following.

• In [10], the authors established the spectral theory of Lε as stated in Lemma 2.1 (1)-(3) ap-

pealing to the well-known spectral theory of LSε (see e.g. [4]).

• The semigroup estimates in Lemma 2.2 is established in [45, Lemma 6.1] by exploring solutions

of ut = LSε u.

• In Lemma 2.6 below, we prove tail estimates of uε by means of the classical decaying properties

of eigenfunctions of LSε .

2.3. Concentration estimates and tightness of QSDs. Recall from Definition 1.1 the definition

of QSDs of Xε
t , and from Lemma 2.1 the positive eigenfunction φε,1 of −Lε associated with λε,1. Set

uε :=
φε,1u

G
ε

‖φε,1‖L1(uGε )

and dµε := uεdx. (2.2)

Lemma 2.1 (2) ensures µε ∈ P((0,∞)), where P((0,∞)) is the set of Borel probability measures on

(0,∞).

Proposition 2.1 ([10]). For each ε, µε is the unique QSD of Xε
t with extinction rate λε,1.

We point out that µε being a QSD of Xε
t follows directly from Lemma 2.1. Moreover, it is straight-

forward to check that the density uε satisfies

ε2

2
(auε)

′′ − (buε)
′ = −λε,1uε in (0,∞), (2.3)

that is, uε is a positive and integrable eigenfunction of the Fokker-Planck operator φ 7→ ε2

2 (aφ)′′−(bφ)′

in (0,∞) associated with the eigenvalue −λε,1.

Proving the uniqueness result in Proposition 2.1 is however much more involved. In [10], the

authors achieve this by exploring the so-called “coming down from infinity” saying that ∞ is an

entrance boundary for Xε
t , and obtain a necessary and sufficient condition. As a result, they show

that for any µ ∈ P((0,∞)) the conditioned dynamics Pεµ[Xε
t ∈ •|t < T ε0 ] converges to the QSD µε

as t → ∞. This can be improved to exponential convergence with rate λε,2 − λε,1 if µ is compactly

supported in (0,∞). More precisely, it is proven in [10, Proposition 5.5] that the following holds for
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each ε: for each µ ∈ P((0,∞)) with compact support in (0,∞),

lim
t→∞

e(λε,2−λε,1)t
(
Pεµ [Xε

t ∈ B|t < T ε0 ]− µε(B)
)

=

∫ ∞
0

φε,2dµ∫ ∞
0

φε,1dµ

(
〈1B , φε,2〉L2(uGε )

‖φε,1‖L1(uGε )

−
〈1B , φε,1〉L2(uGε )〈1, φε,2〉L2(uGε )

‖φε,1‖2L1(uGε )

)
, ∀B ∈ B((0,∞)),

where B((0,∞)) is the Borel σ-algebra of (0,∞). It is worthwhile to mention that acquiring informa-

tion about the dynamics of Xε
t from the conditioned dynamics Pεµ[Xε

t ∈ •|t < T ε0 ] is not straightforward

as it is generally hard to study the survival event [t < T ε0 ] for an arbitrarily given initial distribution.

Under the assumptions on b, the ODE (1.2) restricted on (0,∞) is dissipative, and therefore, admits

the global attractor A. By definition (see e.g. [36, 75]), A is the largest compact invariant set of the

flow ϕt generated by solutions of (1.2) and has bounded dissipation property in the sense that

lim
t→∞

distH
(
ϕt(B),A

)
= 0, ∀B ⊂⊂ (0,∞),

where distH denotes the Hausdorff semi-distance on (0,∞). In the current one-dimensional case, it

is easy to check that A is just a closed interval (being possibly a singleton set) with its left endpoint

and right endpoint being respectively the smallest positive zero and largest zero of b. The structure of

A is fairly simple. It consists of either a single point, or equilibria, or equilibria and their connecting

orbits.

We recall from [70] concentration estimates of {uε}ε away from A and ∞.

Lemma 2.5 ([70]). The following hold.

(1) For each O ⊂⊂ (0,∞) \ A, there are γO > 0 and 0 < εO � 1 such that

sup
O
uε ≤ e−

γO
ε2 , ∀ε ∈ (0, εO).

(2) For each κ ∈ (0, 1), there are xκ ∈ (0, 1) and 0 < εκ � 1 such that

uε(x) ≤ 1

xκ
, ∀x ∈ (0, xκ), ε ∈ (0, εκ).

The proof of Lemma 2.5 (1) in [70] is based on the sub-level set approach developed in [43] and

the construction of uniform-in-noise Lyapunov functions. Lemma 2.5 (2) is the most important result

in [70]. It addresses the tightness of {uε}ε near 0 by circumventing the difficulties caused by the

degeneracy and singularity of the noise at 0.

In the rest of this subsection, we establish concentration estimates of {uε}ε near ∞ that turn out

to be very useful in the sequel. Recall from Subsection 2.2 that y = ξ(x) and y∞ = ξ(∞).

Lemma 2.6. Let L� 1. The following hold for each 0 < ε� 1.

(1) If y∞ =∞, then

uε ≤ uε(L)

[
a(L)

a

] 3
4

e−γε,L[ξ−ξ(L)]e
1
ε2

∫ •
L
b
ads in [L,∞),

where γε,L =
√

2
ε2 (CLε2 − λε,1). In which, CL := C2 inf [ξ(L),y∞)

b2◦ξ−1

a◦ξ−1 , where C2 = C2(ξ(L)) is

given in Lemma 2.4 (2).
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(2) If y∞ <∞, then

uε ≤ uε(L)

[
a(L)

a

] 3
4 eγε,L[ξ−y∞] − eγε,L[y∞−ξ]

eγε,L[ξ(L)−y∞] − eγε,L[y∞−ξ(L)]
e

1
ε2

∫ •
L
b
ads in [L,∞),

where γε,L is as in (1).

In particular, if L� supA, then uε ≤
[
a(L)
a

] 3
4

e
1
ε2

∫ •
L
b
ads in [L,∞).

Proof. The “In particular” part follows directly from (1), (2) and Lemma 2.5 (1). We prove (1) and (2)

by exploiting decaying properties of eigenfunctions of the Schrödinger operator LSε , which is unitarily

equivalent to the generator Lε (see Subsection 2.2).

Note that wε := uε
uGε

satisfies
∫∞

0
w2
εu
G
ε dx < ∞ and Lεwε = −λε,1wε, and w̃ε := ŨεUεwε satisfies∫ y∞

0
(Vε + M)w̃2

εdy < ∞ and LSε w̃ε = −λε,1w̃ε, where M = | infε inf Vε| < ∞ due to Lemma 2.4 (3).

We readily check that w̃ε(y) = wε(x)
√
vGε (y) = 4

√
a(x)wε(x)

√
uGε (x). Thus,

w̃ε(y)
√
uGε (x)

4
√
a(x)

= wε(x)uGε (x) = uε(x). (2.4)

Fix L� 1 and set yL := ξ(L). We distinguish between the cases y∞ =∞ and y∞ <∞.

Case y∞ =∞. Consider the following problem:{
ε2

2 W̃
′′
ε − CL

ε2 W̃ε = −λε,1W̃ε in (yL,∞),

W̃ε(yL) = w̃ε(yL), W̃ε(∞) = 0,

where CL is as in the statement. The unique solution is given by W̃ε(y) = w̃ε(yL)e−γε,L(y−yL) for

y ∈ [yL,∞), where γε,L is given in the statement. Since Vε ≥ CL
ε2 ≥ λε,1 on [yL,∞) ensured by Lemma

2.4 (2), we find from the comparison principle (see e.g. [4, Chapter 2, Section 2.3]) that w̃ε ≤ W̃ε in

[yL,∞). This together with (2.4) implies that for x ∈ [L,∞),

uε(x) ≤
W̃ε(y)

√
uGε (x)

4
√
a(x)

= uε(L)
[a(L)]

3
4

[a(x)]
3
4

e−γε,L[ξ(x)−ξ(L)]e
1
ε2

∫ x
L
b
ads.

Case y∞ <∞. Consider the following problem:{
ε2

2 W̃
′′
ε − CL

ε2 W̃ε = −λε,1W̃ε in (yL, y∞),

W̃ε(yL) = w̃ε(yL), W̃ε(y∞) = 0.

The unique solution is given by

W̃ε(y) = w̃ε(yL)
eγε,L(y−y∞) − eγε,L(y∞−y)

eγε,L(yL−y∞) − eγε,L(y∞−yL)
, y ∈ [yL, y∞).

To apply the comparison principle, we verify

w̃ε(y∞) := lim
y→y−∞

w̃ε(y) = 0. (2.5)

To see this, we first claim for fixed K � 1,∫ y∞

ξ(K)

Vεdy =∞. (2.6)
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Indeed, we see from Lemma 2.4 (2) that
∫ y∞
ξ(K)

Vεdy ≥ C2

ε2

∫ y∞
ξ(K)

b2◦ξ−1

a◦ξ−1 dy = C2

ε2

∫∞
K

b2

a
√
a
dx, where

C2 = C2(ξ(K)). Since limx→∞
b2(x)
a(x) =∞ by (H)(3), there is c1 > 0 such that∫

{x∈(K,∞):a(x)≤1}

b2

a
√
a
dx ≥ c1 |{x ∈ (K,∞) : a(x) ≤ 1}| . (2.7)

As lim supx→∞
a(x)
|b(x)| < ∞ by (H)(3), there is c2 > 0 such that a(x)

|b(x)| ≤
1
c2

for all x > K (making K

larger if necessary). It follows that∫
{x∈(K,∞):a(x)>1}

b2

a
√
a
dx ≥

∫
{x∈(K,∞):a(x)>1}

√
a

(
b

a

)2

dx ≥ c22 |{x ∈ (K,∞) : a(x) > 1}| ,

which together with (2.7) yields
∫∞
K

b2

a
√
a
dx =∞ and thus, (2.6) holds.

Now, we show (2.5). It follows from
∫ y∞

0
(Vε + M)w̃2

εdy < ∞, (2.6) and the positivity of w̃ε that

lim infy→y−∞ w̃ε(y) = 0. Suppose for contradiction that lim supy→y−∞ w̃ε(y) > 0. Then, there exists

y∗ (which can be chosen to be arbitrary close to y∞) such that w̃ε has a local maximum at y∗. In

particular, w̃′′ε (y∗) ≤ 0. This together with ε2

2 w̃
′′
ε (y∗) − Vε(y∗)w̃ε(y∗) = −λε,1w̃ε(y∗) implies that

Vε(y∗) ≤ λε,1. Since Vε(y)→∞ as y → y−∞, we arrive at a contradiction. Hence, (2.5) is true.

Due to (2.5) and Vε ≥ CL
ε2 ≥ λε,1 on [yL,∞), we apply the comparison principle to conclude that

w̃ε(y) ≤ W̃ε(y) for all y ∈ [yL,∞). This together with (2.4) implies

uε(x) ≤
W̃ε(y)

√
uGε (x)

4
√
a(x)

= uε(L)
[a(L)]

3
4

[a(x)]
3
4

eγε,L[ξ(x)−y∞] − eγε,L[y∞−ξ(x)]

eγε,L[ξ(L)−y∞] − eγε,L[y∞−ξ(L)]
e

1
ε2

∫ x
L
b
ads

for all x ∈ [L,∞). This completes the proof. �

The following result is a direct consequence of Lemma 2.5 and Lemma 2.6.

Corollary 2.1. For any open set O containing A, there holds limε→0 µε(O) = 1. In particular, the

family of QSDs {µε}ε is tight.

We end this section by pointing out the difference between [70] and the present paper in treating

the tightness of {µε}ε near infinity. Assuming the existence of a uniform-in-noise Lyapunov function

near ∞, the authors proved in [70] the exponential smallness in ε of the tail estimate appealing to

the sub-level set approach put forward in [43]. Here, explicit assumptions on a and b allow us to use

decaying properties of eigenfunctions of the Schrödinger operator LSε (which is unitarily equivalent to

Lε) to establish exponential decaying estimates for the density uε. Corresponding results, presented

in Lemma 2.6, turn out to be crucial in applying the identities in Proposition 4.1 to derive sharp

asymptotic of {uε}ε.

3. Vanishing viscosity limits

To study the exponential asymptotic of uε as ε→ 0, we introduce the logarithmic transform:

vε = −ε
2

2
ln(auε) in (0,∞). (3.1)

It is well-defined as both a and uε are positive on (0,∞). Moreover, since a, uε ∈ C3((0,∞)), there

holds vε ∈ C3((0,∞)). Clearly, the local uniform convergence of − ε
2

2 lnuε to some v ∈ C((0,∞)) as

ε→ 0 is equivalent to the local uniform convergence of vε to v as ε→ 0.
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It is straightforward to check that vε satisfies the following singularly perturbed equation:

− ε2

2
v′′ε + (v′ε)

2 +
b

a
v′ε =

ε2

2

[(
b

a

)′
− λε,1

a

]
in (0,∞). (3.2)

The next result addresses the local uniform boundedness of {vε}ε and {v′ε}ε. Its proof is postponed

to the end of this section. Recall from Subsection 2.3 that A is the global attractor of ẋ = b(x) in

(0,∞).

Lemma 3.1. The following hold.

(1) For each O ⊂⊂ (0,∞), there exist γ1
O ∈ R, γ2

O > 0 and 0 < εO � 1 such that

γ1
O ≤ inf

O
vε ≤ sup

O
vε ≤ γ2

O, ∀ε ∈ (0, εO).

Moreover, if O ⊂⊂ (0,∞) \ A = ∅, then γ1
O > 0.

(2) For each O ⊂⊂ (0,∞), there exist ΓO > 0 and 0 < εO � 1 such that supO |v′ε| ≤ ΓO for all

ε ∈ (0, εO).

Denote by V the set of limit points of {vε}ε under the topology of locally uniform convergence

in (0,∞) as ε → 0. By Lemma 3.1, we apply the Arzelá-Ascoli theorem and standard diagonal

argument to conclude V 6= ∅ and V ⊂ C((0,∞)). Moreover, the well-known result on the stability of

viscosity solutions (see e.g. [19]) ensures that each element of V is a viscosity solution of the following

Hamilton-Jacobi equation:

(v′)2 +
b

a
v′ = 0 in (0,∞). (3.3)

Unfortunately, (3.3) admits infinitely many viscosity solutions.

We prove some properties of functions in V.

Proposition 3.1. Each v ∈ V is locally Lipschitz continuous and satisfies

(v′)2 +
b

a
v′ = 0 a.e. in (0,∞).

Moreover, v > 0 on (0,∞) \ A, v(0+) ∈ (0,∞), v(∞) =∞ and minA v = 0.

Proof. Let v ∈ V. By Lemma 3.1 (2), v is locally Lipschitz continuous. Since v is a viscosity solution

of (3.3), it is well-known (see e.g. [19]) that if v is differentiable at x0 ∈ (0,∞), then (v′)2 + b
av
′ = 0

holds at x0. Hence, v satisfies (v′)2 + b
av
′ = 0 a.e. in (0,∞).

Lemma 3.1 (1) ensures that v > 0 on (0,∞) \A. Since b > 0 in (0, inf A), we see from the equation

that v′ ≤ 0 a.e. in (0, inf A), and thus, v is non-increasing on (0, inf A). It follows that v(0+) ∈ (0,∞].

Since v′ ≥ − b
a a.e. in (0, inf A), v(0+) must be finite, and hence, v(0+) ∈ (0,∞).

We see from Lemma 2.6 that v(x) ≥ − 1
2

∫ x
L
b(s)
a(s)ds for all x ≥ L. Since

∫ x
L
b(s)
a(s)ds→ −∞ as x→∞,

we conclude v(∞) =∞.

It remains to show minA v = 0. Let I be an open interval such that A ⊂ I ⊂⊂ (0,∞). Corollary

2.1 ensures that limε→0

∫
I
uεdx = 1, or limε→0

∫
I

1
ae
− 2
ε2
vεdx = 1. This together with the uniform

convergence of vε (up to a subsequence) to v on I as ε → 0 implies that infI v = 0, and hence,

minA v = 0. �

The rest of this section is devoted to the proof of Lemma 3.1.
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Proof of Lemma 3.1. (1) Let O ⊂⊂ (0,∞) be open. It follows from the classical interior estimates

for elliptic equations (see e.g. [33]) that there exists γO > 0 such that supO uε ≤ e
γO
ε2 , which together

with (3.1) leads to infO vε ≥ −γO2 .

To see the upper bound of vε on O, we let O1 be an open interval satisfying A∪O ⊂ O1 ⊂⊂ (0,∞).

Fix 0 < δ � 1. Since Corollary 2.1 ensures |O1| supO1
uε ≥

∫
O1
uεdx ≥ 1− δ, we see from Harnack’s

inequality that there exists γO1
> 0 such that infO1

uε ≥ e−
γO1
ε2 , which together with (3.1) yields

supO vε ≤ supO1
vε ≤

γO1

2 .

For the “Moreover” part, we let O ⊂⊂ (0,∞) \ A. Then, Lemma 2.5 (1) yields the existence of

γ̂O > 0 such that supO uε ≤ e
− γ̂O
ε2 , leading to infO vε ≥ γ̂O

2 > 0. This completes the proof of (1).

(2) The proof is inspired by the Bernstein-type estimate in [28, Lemma 2.2]. The key point here

lies in the non-negativeness of the term (v′ε)
2 in (3.2). Let I1, I2 be open intervals and satisfy

∅ 6= I1 ⊂⊂ I2 ⊂⊂ (0,∞). Let η : (0,∞) → [0, 1] be smooth and satisfy η = 1 in I1 and η = 0 in

(0,∞) \ I2.

Consider the auxiliary function zε = η4(v′ε)
2. We claim that

sup
ε

max zε <∞. (3.4)

If this is the case, then supε supI1 |v
′
ε| <∞, leading to the conclusion.

It remains to show (3.4). Since zε is continuous and compactly supported in I2, there exists xε ∈ I2
such that zε(xε) = max zε. We may assume, without loss of generality, that max zε > 0. Then,

η(xε) > 0 and v′ε(xε) 6= 0.

We calculate

z′ε = 4η3η′(v′ε)
2 + 2η4v′εv

′′
ε , z′′ε = (η4)′′(v′ε)

2 + 16η3η′v′εv
′′
ε + 2η4(v′′ε )2 + 2η4v′εv

′′′
ε .

Multiplying the expression of z′′ε by − ε
2

2 and setting cε := ε2

2

[(
b
a

)′ − λε,1
a

]
(i.e., the right hand side of

(3.2)), we find from (3.2) and straightforward calculations that

−ε
2

2
z′′ε = −ε

2

2
(η4)′′(v′ε)

2 − 8ε2η3η′v′εv
′′
ε − ε2η4(v′′ε )2 + 2η4v′εc

′
ε

− 4η4(v′ε)
2v′′ε − 2η4

(
b

a

)′
(v′ε)

2 − 2η4 b

a
v′εv
′′
ε .

(3.5)

At the point xε, there holds z′ε = 0, namely, 4η3η′(v′ε)
2 + 2η4v′εv

′′
ε = 0. Since η(xε) > 0 and

v′ε(xε) 6= 0, we find

ηv′′ε = −2η′v′ε at xε. (3.6)

As z′′ε (xε) ≤ 0, we find from (3.5) and (3.6) that at the point xε there holds

ε2η4(v′′ε )2 ≤ −ε
2

2
(η4)′′(v′ε)

2 − 8ε2η3η′v′εv
′′
ε + 2η4v′εc

′
ε − 4η4(v′ε)

2v′′ε − 2η4

(
b

a

)′
(v′ε)

2 − 2η4 b

a
v′εv
′′
ε

≤ −ε
2

2
(η4)′′(v′ε)

2 − 8ε2η2η′v′ε(−2η′v′ε) + η4(v′ε)
2 + η4(c′ε)

2

− 4η3(v′ε)
2(−2η′v′ε)− 2η4

(
b

a

)′
(v′ε)

2 − 2η3 b

a
v′ε(−2η′v′ε)

= 8η3η′(v′ε)
3 + ζεη

2(v′ε)
2 + η4(c′ε)

2,
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where ζε in the equality is given by

ζε = −ε
2

2
(12|η′|2 + 4ηη′′) + 16ε2(η′)2 + η2 − 2η2

(
b

a

)′
+ 4η′η

b

a
.

Thus, setting C1 := 8 max |η′|, C2 := supε max |ζε| and C3 := supε max
[
ε2η4(c′ε)

2
]
, we find

ε2η4(v′′ε )2 ≤ C1η
3|v′ε|3 + C2η

2(v′ε)
2 + C3 at xε.

Since C2η
2(v′ε)

2 ≤ C3
2

3 + 2
3η

3|v′ε|3 by Young’s inequality, we arrive at

ε2η4(v′′ε )2 ≤ C4η
3|v′ε|3 + C5 at xε, (3.7)

where C4 = C1 + 2
3 and C5 =

C3
2

3 + C3.

As (3.2) gives (v′ε)
2 = cε − b

av
′
ε + ε2

2 v
′′
ε and Hölder’s inequality gives | bav

′
ε| ≤ 1

2

(
b
a

)2
+ 1

2 (v′ε)
2, we

deduce 1
2 (v′ε)

2 ≤ ε2

2 v
′′
ε + cε + 1

2

(
b
a

)2
. Thus,

η4(v′ε)
4 ≤ η4

[
ε2v′′ε + 2cε +

(
b

a

)2
]2

≤ 2ε4η4(v′′ε )2 + 2η4

[
2cε +

(
b

a

)2
]2

.

This together with (3.7) implies that η4(v′ε)
4 ≤ 2ε2C4η

3|v′ε|3 + C6 at xε, where

C6 = sup
ε∈(0,ε∗)

2ε2C5 + max 2η4

[
2cε +

(
b

a

)2
]2
 .

Let κ > 0 be such that 3
4κ

4
3 = 1

2 . Applying Young’s inequality, we find

η4(v′ε)
4 ≤ 2ε2C4

κ
κη3|v′ε|3 + C6 ≤

1

4

16ε8C4
4

κ4
+

1

2
η4(v′ε)

4 + C6 at xε,

leading to η4(v′ε)
4 ≤ C7 :=

8ε8∗C
4
4

κ4 + 2C6 at xε. It follows that max zε = η4(xε)(v
′
ε)

2(xε) ≤
√
C7 max η2.

As the right hand side of this estimate is independent of ε, we conclude (3.4), and hence, complete

the proof. �

4. Large deviation principle for QSDs

In this section, we study the LDP for QSDs {µε}ε. In Subsection 4.1, we derive important identities

for uε, vε and v′ε. Subsections 4.2, 4.3 and 4.4 are respectively devoted to the proof of Theorems A, B

and C.

4.1. Identities. Recall uε and vε from (2.2) and (3.1), respectively. We derive identities for uε, vε
and v′ε that play crucial roles in proving the LDP for {µε}ε.

Proposition 4.1. Assume (H). For each ε,

uε =
2λε,1
ε2a

e−
2
ε2
V

∫ •
0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz,

vε = −ε
2

2
ln

2

ε2
− ε2

2
lnλε,1 −

ε2

2
ln

∫ •
0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz + V,

v′ε = − b
a
− λε,1e

2
ε2
vε

∫ ∞
•

1

a
e−

2
ε2
vεdz.
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We establish several lemmas before proving Proposition 4.1. Recall from the proof of Lemma 2.6

that wε = uε
uGε

.

Lemma 4.1. For each ε, limx→∞
wε(x)
4
√
a(x)

e−
V (x)

ε2 = 0.

Proof. It is a byproduct of the proof of Lemma 2.6. Indeed, since

wε(x)
4
√
a(x)

e−
V (x)

ε2 = 4
√
a(x)wε(x)

√
uGε (x) = w̃ε(ξ(x)) ≤ W̃ε(ξ(x)), ∀x� 1,

the lemma follows immediately from limy→y∞ W̃ε(y) = 0 and y = ξ(x). �

Lemma 4.2. For each ε, ε2

2

(
w′εe
− 2
ε2
V
)′

= −λε,1uε in (0,∞). In particular, w′ε > 0 in (0,∞) and

wε(0+) = 0.

Proof. Note that wε satisfies Lεwε = −λε,1wε, namely, ε2

2 aw
′′
ε + bw′ε = −λε,1wε. Multiplying this

equation by uGε , we readily derive the identity as in the statement.

We show w′ε > 0. Suppose for contradiction that there is x∗ ∈ (0,∞) such that w′ε(x∗) ≤ 0. Fix

x∗∗ > x∗. Integrating the identity over [x∗, x∗∗] yields w′ε(x∗∗) < 0. We then integrate the identity

over [x∗∗, x] to find

w′ε(x)e−
2
ε2
V (x) < −C1 := w′ε(x∗∗)e

− 2
ε2
V (x∗∗) < 0 for x > x∗∗.

It follows that w′ε(x) < −C1e
2
ε2
V (x) for x > x∗∗. Since V (x)→∞ as x→∞, there exists C2 > 0 such

that w′ε(x) ≤ −C2 for all x� 1, which implies that wε < 0 for all x� 1, leading to a contradiction.

It remains to show wε(0+) = 0. Since wεu
G
ε = uε ∈ L1((0,∞)), we conclude from the behavior of

uGε (x) near x = 0 and the monotonicity of wε that wε(0+) = 0. �

Lemma 4.3. For each ε, limx→∞ w′ε(x)e−
2
ε2
V (x) = 0.

Proof. By Lemma 4.2, w′εe
− 2
ε2
V is positive and decreasing. So, C := limx→∞ w′ε(x)e−

2
ε2
V (x) ≥ 0. It

suffices to show C = 0.

Suppose on the contrary that C > 0. Then, there is x∗ � 1 such that w′εe
− 2
ε2
V ≥ C

2 in (x∗,∞),

and hence,

wε(x) = wε(x∗) +

∫ x

x∗

w′ε(s)ds ≥ wε(x∗) +
C

2

∫ x

x∗

e
2
ε2
V (s)ds, ∀x > x∗. (4.1)

Since (H)(3) ensures V ′(x) ≤ V m(x) for x� 1, we derive

d
dx

∫ x
x∗
e

2
ε2
V (s)ds

d
dxe

3
2ε2

V (x)
=

2ε2e
1

2ε2
V (x)

3V ′(x)
≥ 2ε2e

1
2ε2

V (x)

3V m(x)
→∞ as x→∞,

where we used limx→∞ V (x) = ∞ in the limit. It follows that limx→∞

∫ x
x∗
e

2
ε2
V (s)

ds

e
3

2ε2
V (x)

= ∞, which

together with (4.1) yields

wε(x) ≥ wε(x∗) +
C

2
e

3
2ε2

V (x), ∀x� 1. (4.2)

Thanks to Lemma 2.6 and wε = auεe
2
ε2
V , we find C1 > 0 such that wε(x) ≤ C1a

1
4 e

1
ε2
V (x) for x� 1.

By (H)(3), there is C2 > 0 such that a
1
4 (x) ≤ eC2x and V (x) ≥ C2x for all x� 1. As a result,

wε(x) ≤ C1e
C2xe

1
ε2
V (x) ≤ C1e

4
3ε2

V (x), ∀x� 1.
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This contradicts (4.2) due to limx→∞ V (x) =∞. Hence, C = 0. �

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Integrating the identity in Lemma 4.2 over [x, x̃] ⊂ (0,∞) yields

ε2

2
w′ε(x̃)e−

2
ε2
V (x̃) − ε2

2
w′ε(x)e−

2
ε2
V (x) = −λε,1

∫ x̃

x

uεdz.

Passing to the limit x̃ → ∞, we deduce from Lemma 4.3 that ε2

2 w
′
εe
− 2
ε2
V = λε,1

∫∞
• uεdz, which

together with wε(0+) = 0 (by Lemma 4.2) gives wε =
2λε,1
ε2

∫ •
0
e

2
ε2
V (z)

(∫∞
z
uεdz̃

)
dz. As uε = wεu

G
ε ,

we derive the formula for uε. The formula for vε then is a direct consequence of its definition.

Note v′ε = − ε
2

2
(auε)

′

auε
. Integrating ε2

2 (auε)
′′ − (buε)

′ = −λε,1uε gives ε2

2 (auε)
′ − buε = λε,1

∫∞
• uεdz,

leading to v′ε = − b
a +

λε,1
auε

∫∞
• uεdz. The conclusion follows readily from uε = 1

ae
− 2
ε2
vε . �

The formula for uε in Proposition 4.1 leads to refined estimates of {uε}ε near 0 in comparison to

those given in Lemma 2.5 (2).

Lemma 4.4. Assume (H). For each 0 < δ � 1, there are 0 < xδ � 1 and 0 < εδ � 1 such that

e−
2
ε2

(d1+δ) ≤ uε(x) ≤ e−
2
ε2

(d1−δ), ∀x ∈ (0, xδ), ε ∈ (0, εδ).

Proof. We only establish the lower bound; the upper bound follows in a similar manner. Consider

the formula for uε in Proposition 4.1. Note that for each 0 < δ � 1, there is 0 < xδ � 1 such

that |V (x) − V (y)| ≤ δ
2 for all x, y ∈ (0, xδ). By Corollary 2.1, there exists 0 < εδ � 1 such that∫∞

xδ
uεdz̃ ≥ 1− δ for all ε ∈ (0, εδ). Then, for each x ∈ (0, xδ) and ε ∈ (0, εδ),

uε(x) ≥ 2(1− δ)λε,1
ε2a(x)

∫ x

0

e
2
ε2

[V (x)−V (z)]dz =
2(1− δ)λε,1
ε2a(x)

xe
2
ε2

[V (x)−V (ξ)],

where we used the mean value theorem in the equality and ξ ∈ (0, x). The desired inequality then

follows from Lemma 2.3 and the facts that a(0) = 0 and a′(0) > 0. �

The next result, improving Corollary 2.1, is a simple consequence of Lemma 2.5 (1), Lemma 2.6

and Lemma 4.4.

Corollary 4.1. Assume (H). For each open set O satisfying A ⊂ O ⊂⊂ (0,∞), there exist γO > 0

and 0 < εO � 1 such that µε((0,∞) \ O) ≤ e−
γO
ε2 for all ε ∈ (0, εO).

4.2. Proof of Theorem A. Let (α, β) ⊂ (0,∞) be the unique d1-valley. We focus on the case α > 0;

the case α = 0 can be treated in the same way and is easier.

Up to a subsequence, we may assume without loss of generality that limε→0 vε = v locally uniformly

in (0,∞). We determine v within three steps.

Step 1. Let x0 be the smallest zero of v. By Proposition 3.1, x0 exists and belongs to [inf A, supA].

We show

v(x) = d1 + V (x)− sup
(0,x)

V =

{
d1 + V (x)− sup(0,x) V, x ∈ (0, α],

d1 + V (x)− V (α), x ∈ (α, x0],
(4.3)

and

x0 = min

{
x ∈ (α, β) : V (x) = min

(α,β)
V

}
. (4.4)
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Fix x ∈ (0, x0). Note that Proposition 3.1 and the definition of x0 ensure min(0,x] v > 0. The locally

uniform convergence of vε to v as ε → 0 and Lemma 4.4 then imply limε→0 infz∈(0,x)

∫∞
z
uεdz̃ = 1,

and hence,

lim
ε→0

ε2

2
ln

∫ x

0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz = sup

(0,x)

V.

This together with the formula for vε in Proposition 4.1 and Lemma 2.3 yields limε→0 vε(x) = d1 +

V (x)− sup(0,x) V . From which and the continuity of v, the first equality in (4.3) follows readily.

Since v(x0) = 0 by the definition of x0, we see from the first equality in (4.3) that sup(0,x0) V −
V (x0) = d1. As (α, β) is the unique d1-valley, there must hold x0 ∈

{
x ∈ (α, β) : V (x) = min(α,β) V

}
and (4.4), otherwise v attains 0 in (0, x0).

Observing that V (α) = max(0,β) V , we deduce the second equality in (4.3).

Step 2. We prove that for any x1, x2 ∈ (0,∞) with x1 < x2, there holds

lim
ε→0

ε2

2
ln

∫ x2

x1

λε,1e
2
ε2
vε(z)

(∫ ∞
z

1

a
e−

2
ε2
vεdz̃

)
dz = −d1 + γ(x1, x2), (4.5)

where

γ(x1, x2) = sup
z∈[x1,x2]

sup
z̃∈(z,∞)

[v(z)− v(z̃)]. (4.6)

To see this, we fix x1, x2 ∈ (0,∞) with x1 < x2 and split the integral∫ x2

x1

λε,1e
2
ε2
vε(z)

(∫ ∞
z

1

a
e−

2
ε2
vεdz̃

)
dz =

∫ x2

x1

λε,1e
2
ε2
vε(z)

(∫ z1

z

1

a
e−

2
ε2
vεdz̃ +

∫ ∞
z1

1

a
e−

2
ε2
vεdz̃

)
dz,

where z1 � x2 is such that infε inf(z1,∞) vε > supε sup(x1,x2) vε. Such an z1 exists due to Lemma 2.6

and the locally uniform convergence of vε to v as ε → 0. It is then easy to see from the dominated

convergence theorem that limε→0

∫ x2

x1
λε,1e

2
ε2
vε(z)

(∫∞
z1

1
ae
− 2
ε2
vεdz̃

)
dz = 0.

Since z1 � 1 and limz→∞ v(z) =∞ by Proposition 3.1, we may assume without loss of generality

that γ(x1, x2) = supz∈[x1,x2] supz̃∈(z,z1)[v(z)− v(z̃)]. Thanks to the locally uniform convergence of vε
to v as ε→ 0, we find for any δ′ > 0, there exists 0 < ε′ � 1 such that

λε,1e
− δ′
ε2

∫ x2

x1

∫ z1

z

1

a
e

2
ε2

[v(z)−v(z̃)]dz̃dz

≤
∫ x2

x1

λε,1e
2
ε2
vε(z)

(∫ z1

z

1

a
e−

2
ε2
vεdz̃

)
dz

≤ λε,1e
δ′
ε2

∫ x2

x1

∫ z1

z

1

a
e

2
ε2

[v(z)−v(z̃)]dz̃dz, ∀0 < ε < ε′.

Note that Laplace’s method yields limε→0
ε2

2 ln
∫ x2

x1

∫ z1
z

1
ae

2
ε2

[v(z)−v(z̃)]dz̃dz = γ(x1, x2), which together

with the above two-sided inequalities, Lemma 2.3 and the arbitrariness of δ′ > 0 leads to (4.5).

Step 3. We finish the proof by showing

v = d1 + V − V (α) in (x0,∞). (4.7)

Integrating the formula for v′ε in Proposition 4.1 over (x1, x2) ⊂⊂ (α,∞) yields

vε(x2)− vε(x1) = V (x2)− V (x1)−
∫ x2

x1

λε,1e
2
ε2
vε(z̃)

(∫ ∞
z̃

1

a
e−

2
ε2
vεdz

)
dz̃. (4.8)
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Since the above inequality holds for any x1, x2 ∈ (α,∞) with x1 < x2, the definition of γ in Definition

(4.6) ensures that γ(x1, x2) < d1. As a result, we let ε→ 0 in (4.8) and apply (4.5) to conclude that

v(x2) = v(x1) + V (x2) − V (x1). Letting x1 → α+ and setting x2 = x ∈ (x0,∞), we conclude (4.7)

from (4.3) and the continuity of v.

4.3. Proof of Theorem B. Recall Mε from (1.8) as well as the set Mδ0 appearing in the definition

of Mε.

(1) The formula for uε in Proposition 4.1 and the definition of Rε (see (1.7)) give

Rε = ελε,1e
2
ε2
d1

2

ε2

∫ •
0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz. (4.9)

We claim

lim
ε→0

2

ε2

∫ •
0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz = − 1

V ′(0+)
locally uniformly in (0,∞), (4.10)

and

ελε,1e
2
ε2
d1 ≈ε

b′(0)

a′(0)
Mε (4.11)

These together with (4.9) lead to the conclusion.

We prove (4.10). Let [`1, `2] ⊂ (0,∞) and fix x∗ ∈ (0,min{infMδ0 , `1}). For x ∈ [`1, `2], there

holds

C1(ε)
2

ε2

∫ x∗

0

e
2
ε2
V dz ≤ 2

ε2

∫ x

0

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz

≤ 2

ε2

∫ x∗

0

e
2
ε2
V dz +

2

ε2

∫ `2

x∗

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz,

where C1(ε) := infz∈(0,x∗)

∫∞
z
uεdz̃ → 1 as ε→ 0 thanks to Corollary 4.1 and Theorem A. Since V |[0,x∗]

has the maximum value 0 attained only at x = 0 and V ′(0+) = − b′(0)
a′(0) < 0, we apply Laplace’s method

to find limε→0
2
ε2

∫ x∗
0
e

2
ε2
V dz = − 1

V ′(0+) . Therefore, (4.10) follows immediately if we show

lim
ε→0

2

ε2

∫ `2

x∗

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz = 0. (4.12)

Since the integral is increasing in `2, we assume without loss of generality that `2 > β. Take

x∗ ∈ (supMδ0 , β). Then,

2

ε2

∫ `2

x∗

e
2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz ≤ 2

ε2

∫ x∗

x∗

e
2
ε2
V (z)dz +

2

ε2

∫ `2

x∗
e

2
ε2
V (z)

(∫ ∞
z

uεdz̃

)
dz. (4.13)

Since sup[x∗,x∗] V (x) < 0, we find limε→0
2
ε2

∫ x∗
x∗
e

2
ε2
V (z)dz = 0. Note that Lemma 2.6 ensures the

existence of some z∗ � `2 such that limε→0
2
ε2

∫ `2
x∗
e

2
ε2
V (z)

(∫∞
z∗
uεdz̃

)
dz = 0. Moreover, Theorem A

and the fact that V (z) − min[z,z∗] V − d1 < 0 for z ∈ [x∗, z∗] (otherwise, there are more than one

d1-valleys) yield

lim
ε→0

2

ε2

∫ `2

x∗
e

2
ε2
V (z)

(∫ z∗

z

uεdz̃

)
dz = lim

ε→0

2

ε2

∫ `2

x∗

∫ z∗

z

e
2
ε2

[V (z)−vε(z̃)]dz̃dz = 0.

Then, (4.12) follows from (4.13). This proves (4.10).
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Now, we show (4.11). Corollary 4.1 and Theorem A ensure the existence of γ > 0 such that∫
Mδ0

uεdx = 1− o(e−
γ

ε2 ). It follows from the formula for uε in Proposition 4.1 and (4.10) that

1− o(e−
γ

ε2 ) =
2λε,1
ε2

∫
Mδ0

1

a(x)
e−

2
ε2
V (x)

∫ x

0

e
2
ε2
V (z)

∫ ∞
z

uεdz̃dzdx

≈ε λε,1e
2
ε2
d1
a′(0)

b′(0)

∫
Mδ0

1

a
e−

2
ε2

(d1+V )dx,

resulting in (4.11).

(2) The proof follows from similar arguments, but the mechanism is slightly different. We break

the proof into three steps. Set Cα :=
√

π
−V ′′(α) for convenience.

Step 1. We prove

lim
ε→0

1

ε

∫ •
0

e
2
ε2

[V (z)−V (α)]

(∫ ∞
z

uεdz̃

)
dz = Cα locally uniformly in (α,∞). (4.14)

Let [`1, `2] ⊂ (α,∞) satisfyMδ0 ⊂ (`1, `2) and `2 > β. Fix x∗ ∈ (α, `1). Then, for each x ∈ [`1, `2],

C4(ε)
1

ε

∫ x∗

0

e
2
ε2

[V−V (α)]dz

≤ 1

ε

∫ x

0

e
2
ε2

[V (z)−V (α)]

(∫ ∞
z

uεdz̃

)
dz

≤ 1

ε

∫ x∗

0

e
2
ε2

[V−V (α)]dz +
1

ε

∫ `2

x∗

e
2
ε2

[V (z)−V (α)]

(∫ ∞
z

uεdz̃

)
dz,

(4.15)

where C4(ε) := infz∈(0,x∗)

∫∞
z
uεdz̃ → 1 as ε→ 0 thanks to Theorem A and Corollary 4.1.

We claim

lim
ε→0

1

ε

∫ x∗

0

e
2
ε2

[V−V (α)]dz = Cα. (4.16)

Recall the assumption V (α) > V in (0, α). In particular, V (α) ≥ 0. If V (α) > 0, then the function z 7→
V (z)−V (α) on [0, x∗] has the maximum value 0 attained only at z = α. Moreover, V ′′(α) = − b

′(α)
a(α) < 0

by assumption. Laplace’s method then yields (4.16). If V (α) = 0, then the function z 7→ V (z)−V (α)

on [0, x∗] has the maximum value 0 attained only at z = 0 and z = α. Since V ′(0) < 0, we find

from Laplace’s method that the integral
∫ x∗

0
e

2
ε2

[V−V (α)]dz is dominated by
∫ α+δ

α−δ e
2
ε2

[V−V (α)]dz for

any fixed 0 < δ � 1. Hence, (4.16) holds.

Arguing as in (1), we deduce that the second integral in the last line of (4.15) tends to 0 as ε→ 0.

Then, (4.14) follows readily.

Step 2. We show

2λε,1e
2
ε2
d1 ≈ε

Mε

Cα
. (4.17)

By Corollary 4.1 and Theorem A, there exists γ > 0 such that
∫
Mδ0

uεdx = 1− o(e−
γ

ε2 ). Given the

formula for uε in Proposition 4.1, we derive

1− o(e−
γ

ε2 ) =
2λε,1
ε2

∫
Mδ0

1

a(x)
e−

2
ε2

[V (x)−V (α)]

∫ x

0

e
2
ε2

[V (z)−V (α)]

∫ ∞
z

uε(z̃)dz̃dzdx

≈ε
2Cαλε,1

ε

∫
Mδ0

1

a
e−

2
ε2

[V−V (α)]dx = 2Cαλε,1e
2
ε2
d1

1

ε

∫
Mδ0

1

a
e−

2
ε2

[d1+V−V (α)]dx,
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where we used (4.14) in the approximating equality. (4.17) follows readily.

Step 3. We prove the limit for Rε. By the formula for uε in Proposition 4.1 and the definition of Rε,

Rε(x) =


2λε,1
ε

e
2
ε2
d1

∫ x

0

e
2
ε2

[V (z)−sup(0,x) V ]

(∫ ∞
z

uεdz̃

)
dz, x ∈ (0, α),

2λε,1
ε

e
2
ε2
d1

∫ x

0

e
2
ε2

[V (z)−V (α)]

(∫ ∞
z

uεdz̃

)
dz, x ∈ [α,∞).

(4.18)

By (4.14) and (4.17), we find Rε ≈ε Mε locally uniformly in (α,∞). Obviously, limε→0

∫∞
z
uεdz̃ = 1

uniformly in z ∈ (0, α]. Arguing as in Step 1 yields limε→0
1
ε

∫ α
0
e

2
ε2

[V (z)−V (α)]
(∫∞
z
uεdz̃

)
dz = Cα

2 .

This together with (4.17) leads to Rε(α) ≈ε 1
2Mε.

For x ∈ (0, α), we see from (4.17) and limε→0

∫∞
z
uεdz̃ = 1 uniformly in z ∈ (0, α) that

Rε(x) ≈ε
Mε

εCα

∫ x

0

e
2
ε2

[V (z)−sup(0,x) V ]dz.

Let x0 be as in the statement. Clearly, x0 ∈ (0, α). It remains to show that

Rε
ε
≈ε −

Mε

2CαV ′(0+)
locally uniformly in (0, x0).

Indeed, given (4.17) and the fact that limε→0

∫∞
z
uεdz̃ = 1 uniformly in z ∈ (0, α), it suffices to study

the asymptotic of the integral
∫ x

0
e

2
ε2

[V−sup(0,x) V ]dz as ε→ 0. Clearly, sup(0,x) V = 0. Since V (0+) >

V (z) for all z ∈ (0, x] and V ′(0+) = − b′(0)
a′(0) < 0, Laplace’s method yields limε→0

2
ε2

∫ x
0
e

2
ε2
V dz =

− 1
V ′(0+) , which is locally uniformly in x ∈ (0, x0). The limit follows.

4.4. Proof of Theorem C. (1) It follows from Lemma 2.6. (2) It follows from Lemma 4.4.

(3) The limits concerning λε,1 in (i) and (ii) follow from (4.11) and (4.17), respectively. It remains

to show the limit of ‖φε,1‖L1(uGε )φε,1. Recall that uε =
φε,1u

G
ε

‖φε,1‖L1(uGε )
and uGε = 1

ae
− 2
ε2
V .

(i) As φε,1 = ‖φε,1‖L1(uGε )
uε
uGε

and ‖φε,1‖L2(uGε ) = 1, we see ‖φε,1‖2L1(uGε ) =
(∫∞

0
u2
ε

uGε
dx
)−1

, and thus,

‖φε,1‖L1(uGε )φε,1 =

(∫ ∞
0

u2
ε

uGε
dx

)−1
uε
uGε

=

(∫ ∞
0

Rεuεdx

)−1

Rε,

where we used the fact uε = Rε
εa e
− 2
ε2
v = Rε

ε e
− 2
ε2
d1uGε ensured by the definition of Rε and Theorem A.

Since Rε ≈ε Mε locally uniformly in (0,∞) by Theorem B (1), the result follows if we can show∫ ∞
0

Rεuεdx ≈ε Mε. (4.19)

Fix K � 1. Corollary 4.1 ensures the existence of γ > 0 such that
∫

(0, 1
K )∪(K,∞)

uεdx ≤ e−
γ

ε2 .

Hence, Theorem B (1) yields
∫K

1
K
Rεuεdx ≈ε Mε

∫K
1
K
uεdx ≈ε Mε. It is obvious from (4.9) that Rε is

increasing, leading to
∫ 1
K

0
Rεuεdx .ε Mε

∫ 1
K

0
uεdx .ε Mεe

− γ

ε2 .

We claim that there is γ′ > 0 such that
∫∞
K
Rεuεdx .Mεe

− γ
′

ε2 . Then, (4.19) follows.

It remains to prove the claim. Fix 1� L < K. We distinguish between y∞ =∞ and y∞ <∞.

• If y∞ =∞, then Lemma 2.6 and uε(L) = Rε(L)
εa(L) e

− 2
ε2
v(L) give

uε ≤
Rε(L)

ε[a(L)]
1
4 a

3
4

e−
2
ε2
v(L)e−γε,L[ξ−ξ(L)]e

1
ε2

∫ •
L
b
ads in [L,∞),
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where γε,L =
√

2
ε2 (CLε2 − λε,1). In which, CL := C2 inf [ξ(L),y∞)

b2◦ξ−1

a◦ξ−1 , where C2 = C2(ξ(L)) is

given in Lemma 2.4 (2). It follows that∫ ∞
K

Rεuεdx ≤
∫ ∞
K

[Rε(L)]2

ε
√
a(L)

√
a(x)

e−
4
ε2
v(L)e−2γε,L[ξ(x)−ξ(L)]e

2
ε2

∫ x
L
b
adse

2
ε2
v(x)dx

=
[Rε(L)]2

ε
√
a(L)

e−
4
ε2
v(L)e

2
ε2
v(L)

∫ ∞
K

1√
a
e−2γε,L[ξ−ξ(L)]dx

=
[Rε(L)]2

ε
√
a(L)

e−
2
ε2
v(L)

∫ ∞
ξ(K)

e−2γε,L[y−ξ(L)]dy .ε
M2
ε

ε
√
a(L)

e−
2
ε2
v(L) 1

2γε,L
e−2γε,L[ξ(K)−ξ(L)].

• If y∞ <∞, then Lemma 2.6 and uε(L) = Rε(L)
εa(L) e

− 2
ε2
v(L) give

uε ≤
Rε(L)

ε[a(L)]
1
4 a

3
4

e−
2
ε2
v(L) eγε,L[ξ−y∞] − eγε,L[y∞−ξ]

eγε,L[ξ(L)−y∞] − eγε,L[y∞−ξ(L)]
e

1
ε2

∫ •
L
b
ads in [L,∞),

where γε,L is as above. It follows that∫ ∞
K

Rεuεdx ≤
[Rε(L)]2

ε
√
a(L)

e−
2
ε2
v(L)

∫ y∞

ξ(K)

(
eγε,L[y−y∞] − eγε,L[y∞−y]

eγε,L[ξ(L)−y∞] − eγε,L[y∞−ξ(L)]

)2

dy

=
[Rε(L)]2

ε
√
a(L)

e−
2
ε2
v(L)

∫ y∞

ξ(K)

e2γε,L[y∞−y]

e2γε,L[y∞−ξ(L)]

(
e2γε,L[y−y∞] − 1

e2γε,L[ξ(L)−y∞] − 1

)2

dy

≤ [Rε(L)]2

ε
√
a(L)

e−
2
ε2
v(L)

∫ y∞

ξ(K)

e−2γε,L[y−ξ(L)]dy .ε
M2
ε

ε
√
a(L)

e−
2
ε2
v(L) 1

2γε,L
e−2γε,L[ξ(K)−ξ(L)].

By the definition of Mε, it is clear that Mε .ε e
γ

ε2 for any γ > 0. Hence,
∫∞
K
Rεuεdx .ε Mεe

− γ
′

ε2 for

some γ′ > 0, proving the claim.

(ii) As in the proof of (i), we calculate

‖φε,1‖L1(uGε )φε,1 =

(∫ ∞
0

u2
ε

uGε
dx

)−1
uε
uGε

=

(∫ ∞
0

Rε
ε
e

2
ε2

(−v+V )uεdx

)−1
Rε
ε
e

2
ε2

(−v+V ), (4.20)

where we used the fact uε = Rε
εa e
− 2
ε2
v ensured by the definition of Rε and Theorem A. Fix K � 1.

We claim that ∫ ∞
0

Rε
ε
e

2
ε2

(−v+V )uεdx ≈ε
∫ K

α+ 1
K

Rε
ε
e

2
ε2

(−v+V )uεdx. (4.21)

Suppose (4.21) for the moment. Theorem A and Corollary 4.1 ensure∫ α+ 1
K

0

uεdx ≤ e−
2γ

ε2 for some γ > 0 and lim
ε→0

∫ K

α+ 1
K

uε = 1, (4.22)

and

− v(x) + V (x) =

{
−d1 + sup(0,x) V, x ∈ (0, α],

−d1 + V (α), x ∈ [α,∞),
(4.23)

It follows from (4.21) and Theorem B (2) that∫ ∞
0

Rε
ε
e

2
ε2

(−v+V )uεdx ≈ε
Mε

ε
e

2
ε2

[−d1+V (α)]

∫ K

α+ 1
K

uεdx ≈ε
Mε

ε
e

2
ε2

[−d1+V (α)],
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which together with (4.20) leads to

‖φε,1‖L1(uGε )φε,1(x) ≈ε
Rε
Mε

e
2
ε2

[d1−V (α)]e
2
ε2

[−v(x)+V (x)] ≈ε

{
Rε
Mε
, x ∈ [α,∞),

Rε
Mε
e

2
ε2

[−V (α)+sup(0,x) V ], x ∈ (0, α).

An application of Theorem B (2) then yields the desired result.

It remains to prove (4.21). Since limε→0

∫K
α+ 1

K
uεdx = 1, we see from Theorem B and (4.23) that∫ K

α+ 1
K

Rε
ε
e

2
ε2

(−v+V )uεdx ≈ε
Mε

ε
e

2
ε2

[−d1+V (α)]. (4.24)

Note that
∫∞
K

Rε
ε e

2
ε2

(−v+V )uεdx = 1
ε e

2
ε2

[−d1+V (α)]
∫∞
K
Rεuεdx. Arguing as in (i) yields∫ ∞

K

Rεuεdx .ε Mεe
− γ
′

ε2 for some γ′ > 0. (4.25)

Given (4.17), we deduce from (4.18) and the fact sup(0,x) V = V (α) for x ∈ [α, α + 1
K ] that for any

fixed 0 < γ1 < γ,

Rε(x) ≤ 2λε,1
ε

e
2
ε2
d1

∫ x

0

e
2
ε2

[V (z)−sup(0,x) V ]dz .ε
Mε

εCα
e

2γ1
ε2 uniformly in x ∈ [0, α+ δ],

which together with (4.23) and (4.22) leads to∫ α+ 1
K

0

Rε
ε
e

2
ε2

(−v+V )uεdx .ε
Mε

ε2Cα
e

2γ1
ε2

∫ α+ 1
K

0

e
2
ε2

[−d1+sup(0,x) V ]dz

.ε
Mε

ε2Cα
e

2
ε2

[γ1−d1+V (α)]

∫ α+ 1
K

0

uεdx ≤
Mε

ε2Cα
e

2
ε2

[−d1+V (α)]e−
2
ε2

(γ−γ1).

This together with (4.24) and (4.25) leads to (4.21).

5. Multiscale dynamics

This section is devoted to the investigation of the multiscale dynamics of Xε
t . We prove Theorem

D in Subsection 5.1, and Theorems E and F in Subsection 5.2.

5.1. Asymptotic reciprocal relationship. In this subsection, we establish the asymptotic distri-

bution of the normalized extinction time and the asymptotic reciprocal relationship between the mean

extinction time Eε•[T ε0 ] and the principal eigenvalue λε,1. That is, we prove Theorem D.

Proof of Theorem D. By Lemma 2.1 (6),

Pεµ[t′ < T ε0 ] = e−λε,1t
′
〈µ, αε,1〉+

∫ ∞
0

P εt′Q
ε
21dµ, ∀t′ > 0,

where αε,1 := ‖φε,1‖L1(uGε )φε,1 and 〈µ, αε,1〉 := ‖φε,1‖L1(uGε )

∫∞
0
φε,1dµ. In particular, setting t′ = tλ−1

ε,1

for t > 0 yields

Pεµ[tλ−1
ε,1 < T ε0 ] = e−t〈µ, αε,1〉+

∫ ∞
0

P ε
tλ−1
ε,1
Qε21dµ. (5.1)

Thanks to Lemma 2.2 (2), we find γ > 0 (independent of ε),∣∣∣∣∫ ∞
0

P ε
tλ−1
ε,1
Qε21dµ

∣∣∣∣ ≤ e−λε,2λε,1
t
∫ ∞

0

a
1
4 e

V+γ

ε2 dµ ≤ Cµe
−λε,2λε,1

t
e

1
ε2

(supsupp(µ) V+γ), (5.2)
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where Cµ = supsupp(µ) a
1
4 . The uniqueness of d1-vallys and Lemma 2.3 guarantee limε→0 ln

λε,2
λε,1

=

d1 − d2 > 0, resulting in limε→0

∫∞
0
P ε
tλ−1
ε,1

Qε21dµ = 0. Letting ε → 0 in (5.1), we derive the limit

limε→0 Pεµ[tλ−1
ε,1 < T ε0 ] from Theorem C.

Now, we study limε→0 λε,1Eεµ[T ε0 ]. Note that for t0 > 0,

λε,1Eεµ[T ε0 ] = λε,1

∫ t0λ
−1
ε,1

0

Pεµ[t < T ε0 ]dt+ λε,1

∫ ∞
t0λ
−1
ε,1

Pεµ[t < T ε0 ]dt. (5.3)

Obviously, limt0→0 supε λε,1
∫ t0λ−1

ε,1

0 Pεµ[t < T ε0 ]dt = 0. Integrating (5.1) over (t0,∞) yields

λε,1

∫ ∞
t0λ
−1
ε,1

Pεµ[t < T ε0 ]dt =

∫ ∞
t0

Pεµ[tλ−1
ε,1 < T ε0 ]dt = e−t0〈µ, αε,1〉+

∫ ∞
t0

∫ ∞
0

P ε
tλ−1
ε,1
Qε21dµdt,

which together with (5.2) leads to∣∣∣∣∣λε,1
∫ ∞
t0λ
−1
ε,1

Pεµ[t < T ε0 ]dt− e−t0〈µ, αε,1〉

∣∣∣∣∣ ≤ Cµλε,1λε,2
e
−λε,2λε,1

t0e
1
ε2

(supsupp(µ) V+γ) → 0 as ε→ 0.

Letting ε→ 0 and then t0 → 0 in (5.3), we conclude limε→0 λε,1Eεµ[T ε0 ] = limε→0〈µ, αε,1〉. The results

follow readily from Theorem C. �

5.2. Multiscale estimate. In this subsection, we establish the multiscale estimate of the dynamics

of Xε
t . In particular, we prove Theorems E and F.

The proof of Theorem E is in need of the following lemma regarding the boundedness of coefficients

appearing in the expansion of semigroup P εt given in (2.1).

Lemma 5.1. If k ∈ N is such that d1 > d2 > · · · > dk > dk+1, then for each compact K ⊂ (0,∞),

there exist C = C(k,K) > 0 and ε∗ = ε∗(k,K) > 0 such that

sup
µ∈P((0,∞))
supp(µ)⊂K

sup
0<ε<ε∗

∣∣∣∣〈f, φε,i〉L2(uGε )

∫ ∞
0

φε,idµ

∣∣∣∣ ≤ C‖f‖∞
for all f ∈ Cb([0,∞)) and i ∈ {1, . . . , k}.

Proof. Set Λε,i(f, µ) := 〈f, φε,i〉L2(uGε )

∫∞
0
φε,idµ. Let k and K be as in the statement, µ ∈ P((0,∞))

satisfy supp(µ) ⊂ K, and f ∈ Cb([0,∞)). By Lemma 2.1 (6), we have for ` ∈ {1, . . . , k},

Eεµ[f(Xε
t )1t<T ε0 ] =

∑̀
i=1

e−λε,itΛε,i(f, µ) +

∫ ∞
0

P εtQ
ε
`+1fdµ, ∀t > 0. (5.4)

We first estimate Λε,1(f, µ). Setting ` = 1 in (5.4) gives

|Λε,1(f, µ)| = eλε,1t
∣∣∣∣Eεµ[f(Xε

t )1t<T ε0 ]−
∫ ∞

0

P εtQ
ε
2fdµ

∣∣∣∣ ≤ eλε,1t(‖f‖∞ +

∫ ∞
0

|P εtQε2f |dµ
)
, ∀t > 0.

An application of Lemma 2.2 (2) yields the existence of γ′2 > 0 such that∫ ∞
0

|P εtQε2f |dµ ≤ e−λε,2t‖f‖∞
∫ ∞

0

a
1
4 e

1
ε2

(V+γ′2)dµ ≤ e−λε,2t+
γ2
ε2 ‖f‖∞, ∀t > 2,

where γ2 := maxK V + γ′2 + 1. Thus, |Λε,1(f, µ)| ≤
[
eλε,1t + e−(λε,2−λε,1)t+

γ2
ε2

]
‖f‖∞ for all t > 2.

Setting t = γ2+1
(λε,2−λε,1)ε2 yields |Λε,1(f, µ)| ≤

[
exp

{
λε,1(γ2+1)

(λε,2−λε,1)ε2

}
+ e−

1
ε2

]
‖f‖∞. Note that Lemma 2.3
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and d1 > d2 ensure limε→0
λε,1(γ2+1)

(λε,2−λε,1)ε2 = 0. We then see the existence of ε1 = ε1(K) > 0 such that

|Λε,1(f, µ)| ≤ 2‖f‖∞ for all 0 < ε < ε1.

Next, we treat Λε,2(f, µ) if k ≥ 2. It follows from (5.4) with ` = 2 and |Λε,1(f, µ)| ≤ 2‖f‖∞ that

|Λε,2(f, µ)| ≤ eλε,2t
(

3‖f‖∞ +

∫ ∞
0

|P εtQε3f |dµ
)
, ∀t > 2.

Since d2 > d3 implies that λε,2 is exponentially smaller than λε,3 (by Lemma 2.3), we can argue as

above to conclude the existence of ε2 = ε2(K) ∈ (0, ε1) such that Λε,2(f, µ) ≤ 4‖f‖∞ for all 0 < ε < ε2.

Following the above arguments, we see that for each i ∈ {2, . . . , k}, establishing the upper bound

for |Λε,i(f, µ)| requires the condition di > di+1 and the upper bound for |Λε,i−1(f, µ)|. Hence, we

conclude the lemma by repeating the above procedure. �

Now, we prove Theorem E.

Proof of Theorem E. (1) Let k and K be as in the statement, µ ∈ P((0,∞)) satisfy supp(µ) ⊂ K,

and f ∈ Cb([0,∞)). We pretend 〈1, φε,i〉L2(uGε ) 6= 0 so that µε,i is well-defined. By Lemma 2.1 (6),

Eεµ[f(Xε
t )1t<T ε0 ] =

k∑
i=1

e−λε,it〈µ, αε,i〉
∫ ∞

0

fdµε,i +

∫ ∞
0

P εtQ
ε
k+1fdµ, ∀t > 0, (5.5)

where αε,i, 〈µ, αε,i〉 and µε,i are as in the statement. In particular, µε,1 = µε. Noting that αε,1 =

‖φε,1‖L1(uGε )φε,1, we apply Theorem C (1) to find limε→0〈µ, αε,1〉 = 1.

The bound for 〈µ, αε,i〉 is proven in Lemma 5.1, which also yields the existence of C = C(k,K) > 0

and ε1 = ε1(k,K) > 0 such that sup0<ε<ε1

∣∣〈µ, αε,i〉 ∫∞0 fdµε,i
∣∣ ≤ C‖f‖∞, leading to ‖〈µ, αε,i〉µε,i‖TV ≤

C for all i ∈ {1, . . . , k}.
Lemma 2.2 (2) yields the existence of γ′k+1 > 0 such that∣∣∣∣∫ ∞

0

P εtQ
ε
k+1fdµ

∣∣∣∣ ≤ e−λε,k+1t‖f‖∞
∫ ∞

0

a
1
4 e

1
ε2

(V+γ′k+1)dµ, ∀t > 2.

Set γk+1 := maxK V + γ′k+1 + 1. Clearly, there is ε2 = ε2(k,K) > 0 such that for 0 < ε < ε2,∣∣∣∣∫ ∞
0

P εtQ
ε
k+1fdµ

∣∣∣∣ ≤ e−λε,k+1t+
γk+1

ε2 ‖f‖∞, ∀t > 2. (5.6)

Setting f ≡ 1 in (5.5) yields Pεµ[t < T ε0 ] =
∑k
i=1 e

−λε,it〈µ, αε,i〉 +
∫∞

0
P εtQ

ε
k+11dµ, which together

with (5.5) gives for t > 0,

Eεµ[f(Xε
t )] = Eεµ[f(Xε

t )1t<T ε0 ] + f(0)(1− Pεµ[t < T ε0 ]) = µ∗(f) +

∫ ∞
0

P εtQ
ε
k+1 [f − f(0)] dµ,

where µ∗(f) :=
∑k
i=1 e

−λε,it〈µ, αε,i〉
∫∞

0
fdµε,i+

(
1−

∑k
i=1 e

−λε,it〈µ, αε,i〉
)
f(0). It then follows from

(5.6) that
∣∣Eεµ[f(Xε

t )]− µ∗(f)
∣∣ ≤ 2e−λε,k+1t+

γk+1

ε2 ‖f‖∞ for all t > 2 and 0 < ε < ε∗ := min{ε1, ε2}.
The conclusion follows.

(2) We only need to show limε→0〈µ, αε,1〉 = pµ. Recall that αε,1 = ‖φε,1‖L1(uGε )φε,1. Since µ is

compactly supported in (0,∞), Theorem C (2) implies that for any 0 < δ � 1,

lim
ε→0

∫
(0,α−δ]

αε,1dµ = 0, lim
ε→0

αε,1(α) =
1

2
, lim

ε→0

∫
[α+δ,∞)

αε,1dµ = µ([α+ δ,∞)). (5.7)

Thus, lim infε→0〈µ, αε,1〉 ≥ 1
2µ({α}) +µ([α+ δ,∞)) for 0 < δ � 1, leading to lim infε→0〈µ, αε,1〉 ≥ pµ.
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To show the reverse inequality, we fix 0 < δ∗ � 1 and set for each 0 < δ < δ∗,

µδ :=

{
µ|(α−δ,α+δ)\{α}
µ((α−δ,α+δ)\{α}) , if µ((α− δ, α+ δ) \ {α}) 6= 0,

0, otherwise.

Obviously, either supp(µδ) ⊂ (α−δ∗, α+δ∗) or supp(µδ) = ∅ for each 0 < δ < δ∗. Hence, an application

of Lemma 5.1 yields the existence of M = M(δ∗) > 0 such that supε sup0<δ<δ∗〈µδ, αε,1〉 ≤ M .

Therefore,

sup
ε

∫
(α−δ,α+δ)\{α}

αε,1dµ ≤Mµ((α− δ, α+ δ) \ {α}), ∀0 < δ < δ∗,

which together with (5.7) results in

lim sup
ε→0

〈µ, αε,1〉 = lim sup
ε→0

[(∫
(0,α−δ]

+

∫
(α−δ,α+δ)\{α}

+

∫
[α+δ,∞)

)
αε,1dµ+ µ({α})αε,1(α)

]

≤Mµ((α− δ, α+ δ) \ {α}) + µ([α+ δ,∞)) +
1

2
µ({α}), ∀0 < δ < δ∗.

Letting δ → 0+ yields lim supε→0〈µ, αε,1〉 ≤ pµ. This completes the proof. �

We prove Theorem F in the rest of this section. The following result, confirming Theorem F over

a shorter time scale, is needed.

Proposition 5.1. Assume (H), {x ∈ (0,∞) : b(x) = 0} = {x∗} and b′(x∗) < 0. Let w : [0,∞) →
[0,∞) be a modulus of continuity. Then, for each compact K ⊂ (0,∞), M > 0 and sequences {tε}ε,
{tε}ε in (0,∞) satisfying tε < tε for each ε, limε→0 tε = ∞ and limε→0 tεe

− γ

ε2 = 0 for each γ > 0,

there holds

lim
ε→0

sup
supp(µ)⊂K

sup
tε≤t≤tε

sup
f∈w[x∗]
‖f‖∞≤M

∣∣∣∣Eεµ[f(Xε
t )]−

∫ ∞
0

fdµε

∣∣∣∣ = 0.

Proof. Let K, tε, tε and w be as in the statement. Let µ ∈ P((0,∞)) have compact support in K.

Fix 0 < δ � 1. Let f ∈ Cb([0,∞)) have modulus of continuity w at x∗. We write

Eεµ[f(Xε
t )] = Eεµ[f(Xε

t )1t<T ε0 ] + f(0)
(
1− Pεµ[t < T ε0 ]

)
=: Eε1(t) + Eε2(t), ∀t ≥ 0.

We first treat Eε1(t). Obviously, x∗ is the global asymptotic stable equilibrium of ẋ = b(x) in (0,∞),

generating the flow ϕt. Hence, ϕt(K) ⊂ A δ
2

:= (x∗ − δ
2 , x∗ + δ

2 ) for all t ≥ tε. An application of the

sample path LDP (see e.g. [31]) yields the existence of γ1 > 0 such that

inf
x∈K

Pεx[Xε
tε
∈ Aδ] ≥ 1− e−

γ1
ε2 . (5.8)

Denote by µεtε the distribution of Xε
tε

with Xε
0 ∼ µ. Then, the strong Markov property and time-

homogeneity of Xε
t ensure that

Eε1(t) = Eεµ
[
Eεµ[f(Xε

t )1t<T ε0 ]|Xε
tε

]
]

=

∫
Aδ

Eε•[f(Xε
t−tε)1t−tε<T

ε
0
]dµεtε +

∫
(0,∞)\Aδ

Eε•[f(Xε
t−tε)1t−tε<T

ε
0
]dµεtε

=: Eε11(t) + Eε12(t), ∀t ≥ tε.

It follows from (5.8) that

|Eε12(t)| ≤ e−
γ1
ε2 ‖f‖∞ ≤ δ‖f‖∞, ∀t ≥ tε. (5.9)
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Applying [31, Theorem 4.4.2], we find γ2, γ3 > 0 such that limε→0 supx∈Aδ P
ε
x[e

γ2
ε2 < T εA2δ

< e
γ3
ε2 ] = 1,

where T εA2δ
:= inf{t ≥ 0 : Xε

t /∈ A2δ} is the first exit time from A2δ. As tε grows sub-exponentially in

ε2 to ∞ as ε→ 0, we find

sup
ε

sup
tε≤t≤tε

sup
x∈Aδ

Pεx[t ≥ T εA2δ
] ≤ δ. (5.10)

Note that for any t ≥ tε,

Eε11(t)− f(x∗) =

∫
Aδ
Eε•[f(Xε

t−tε)1t−tε<T
ε
A2δ

]dµεtε +

∫
Aδ
Eε•[f(Xε

t−tε)1T
ε
A2δ
≤t−tε<T ε0 ]dµεtε − f(x∗)

=

∫
Aδ
Eε•

[
(f(Xε

t−tε)− f(x∗))1t−tε<T εA2δ

]
dµεtε +

∫
Aδ
Eε•[f(Xε

t−tε)1T
ε
A2δ
≤t−tε<T ε0 ]dµεtε

− f(x∗)

∫
Aδ

Pε•[t− tε ≥ T εA2δ
]dµεtε − f(x∗)µ

ε
tε

((0,∞) \ Aδ).

We find from (5.8) and (5.10) that

|Eε11(t)− f(x∗)| ≤ w(2δ) + (‖f‖∞ + |f(x∗)|)
∫
Aδ

Pε•[t ≥ T εA2δ
]dµεtε + |f(x∗)|e−

γ1
ε2

≤ w(2δ) + 3‖f‖∞δ, ∀tε ≤ t ≤ tε.
(5.11)

Thanks to Corollary 4.1,∣∣∣∣f(x∗)−
∫ ∞

0

fdµε

∣∣∣∣ ≤ ∫
Aδ
|f(x∗)− f(x)|dµε +

∫
(0,∞)\Aδ

|f(x∗)− f(x)|dµε ≤ w(δ) + 2‖f‖∞δ,

which together with (5.9) and (5.11) leads to∣∣∣∣Eε1(t)−
∫ ∞

0

fdµε

∣∣∣∣ ≤ |Eε11(t)− f(x∗)|+
∣∣∣∣f(x∗)−

∫ ∞
0

fdµε

∣∣∣∣+ |Eε12(t)|

≤ 2w(2δ) + 6‖f‖∞δ, ∀tε ≤ t ≤ tε.
(5.12)

Now, we treat E2(t). The proof of Theorem E implies the existence of γ4 > 0 such that∣∣Pεµ[t < T ε0 ]− e−λε,1t〈µ, αε,1〉
∣∣ ≤ e γ4

ε2
−λε,2t, ∀t > 2. (5.13)

Since limε→0
ε2

2 lnλε,1 = −d1 < 0 (see Lemma 2.3), limε→0 λε,2 = −b′(x∗) > 0 (see [45, Theorem B])

and limε→0〈µ, αε,1〉 = 1 (see Theorem E), we deduce Pεµ[t < T ε0 ] ≥ 1 − 2δ for all 1
ε2 � t � e

2
ε2
d1 . It

follows from the monotonicity of t 7→ Pεµ[t < T ε0 ] that Pεµ[t < T ε0 ] ≥ 1 − 2δ for all 0 ≤ t ≤ tε. As a

result, |Eε2(t)| ≤ |f(0)|
(
1− Pεµ[t < T ε0 ]

)
≤ 2δ‖f‖∞ for all 0 ≤ t ≤ tε. This together with (5.12) yields∣∣∣∣Eεµ[f(Xε

t )]−
∫ ∞

0

fdµε

∣∣∣∣ ≤ 2w(2δ) + 8‖f‖∞δ, ∀tε ≤ t ≤ tε.

The desired result then follows from the arbitrariness of 0 < δ � 1. �

Now, Theorem F is almost a direct consequence of Corollary E (1) and Proposition 5.1.

Proof of Theorem F. Let K, tε, tε and w be as in the statement. Let tε satisfy limε→0 ε
2tε = ∞

and limε→0 tεe
− γ

ε2 = 0 for each γ > 0. We may assume without loss of generality that tε < tε < tε.

A direct application of Proposition 5.1 yields the conclusion over the time scale [tε, tε]. It follows

from Corollary C (1) that λε,1 ≈ε C
ε e
− 2
ε2

∫ x∗
0

b
ads, where C = b′(0)

a′(0)

√
− b(x∗)
πa(x∗)

, and from [45, Theorem

B] that limε→0 λε,2 = −b′(x∗) > 0. We then apply Corollary E (1) to arrive at the conclusion over the

time scale [tε, tε]. The theorem follows. �
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6. Applications

This section is devoted to some applications of our main results. In Subsection 6.1, we roughly

discuss about diffusion approximations leading to SDEs of the form (1.1). In Subsection 6.2, we

study logistic diffusion processes arising particularly from chemical reactions and population dynamics.

Subsection 6.3 is devoted the diffusion approximation of QSDs.

6.1. Diffusion approximation and SDE. In this subsection, we briefly review the diffusion ap-

proximation giving rise to SDEs of the form (1.1), and present the associated Fokker-Planck equation

(or Kolmogorov forward equation) as well as the Kolmogorov backward equation.

Denote by N0 the set of non-negative integers and consider a continuous-time Markov jump process

ZVt on N0

V :=
{
n
V : n ∈ N0

}
with transition rates qV (·, ·), where V � 1 is a scaling parameter. Note

that the notation V has been used for the potential function defined in (1.4), but this should not

cause any confusion. The main reason for using V as the parameter here is to follow the convention

or tradition, as V is often interpreted as the generalized volume.

We assume for simplicity that for each m ∈ Z \ {0}, there is bm : [0,∞)→ [0,∞) such that

qV

(
n

V
,
n+m

V

)
= V bm

( n
V

)
, ∀n ∈ N0, n+m ∈ N0. (6.1)

In treating chemical reaction systems, the condition (6.1) needs to be replaced by a limiting condition:

1

V
qV

(
n

V
,
n+m

V

)
− bm

( n
V

)
→ 0 as V →∞

with certain uniformity with respect to n ∈ N0 and n + m ∈ N0. Under appropriate assumptions on

bm, m ∈ Z \ {0}, the central limit theorem (see e.g. [49, 27]) ensures that as V → ∞, ZVt converges

to solutions Xε
t of (1.1) with ε = 1√

V
, b =

∑
m6=0mbm and a =

∑
m 6=0m

2bm. More precisely, if

limV→∞ ZV0 = x0 = Xε
0, then for any T > 0, supt∈[0,T ] |ZVt −Xε

t | → 0 in probability as V →∞.

A convenient way to see that the process ZVt approaches a diffusion process of the form (1.1) as

V →∞ is to examine the closeness between their generators. Note that the generator LV of ZVt reads

LV φ
( n
V

)
=
∑
m 6=0

qV

(
n

V
,
n+m

V

)[
φ

(
n+m

V

)
− φ

( n
V

)]
, n ∈ N0.

We expand LV φ
(
n
V

)
up to the second order and use (6.1) to find

LV φ
( n
V

)
≈ b

( n
V

)
φ′
( n
V

)
+

1

2V
a
( n
V

)
φ′′
( n
V

)
,

which corresponds to the generator of the diffusion process (1.1) with ε = 1√
V

, that is, the second-

order differential operator φ 7→ ε2

2 aφ
′′ + bφ′. Its formal L2-adjoint, namely, φ 7→ ε2

2 (aφ)′′ − (bφ)′, is

called the Fokker-Planck operator.

The Kolmogorov backward equation and Fokker-Planck equation (or Kolmogorov forward equation)

associated with (1.1) are respectively given by ut = ε2

2 auxx + bux and ut = ε2

2 (au)xx − (bu)x. They

respectively govern the dynamics of observables and the evolution of distributions of Xε
t .

6.2. Logistic diffusion processes. Consider the following family of SDEs:

dx = (b1x− b2x2)dt+ ε
√
a1x+ a2x2dWt, x ∈ [0,∞), (6.2)

where 0 < ε� 1 is a parameter, b1, b2 and a1 are positive constants, and a2 ≥ 0. We roughly describe

two typical situations giving rise to (6.2) via diffusion approximations (see Subsection 6.1).
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Chemical reactions. Consider the following chemical reactions:

A+X
k1



k−1

2X, X
k2−→ C, (6.3)

where k1, k−1 and k2 are reaction rates. The concentration of A molecules, denoted by xA, is assumed

to remain constant. We assume k1xA > k2.

Let V � 1 be the generalized volume of the system and XV
t be the continuous-time Markov jump

process counting the number of X molecules. Then,
XVt
V is the concentration process on N0

V , and its

transition rates are given by

qV

(
n

V
,
n+m

V

)
=


k1xAn, m = 1,
k−1n(n−1)

2V + k2n, m = −1,

0, otherwise,

whenever n ∈ N0 and n + m ∈ N0. The law of large numbers [27, 1] ensures that as the volume V

grows to infinity, the re-scaled process
XVt
V converges to the solutions of the following mean field ODE

for the concentration of X molecules:

ẋ = −k−1

2
x2 + k1xAx− k2x, x ∈ [0,∞). (6.4)

The fluctuation of
XVt
V around solutions of (6.4) is captured by the central limit theorem [27, 1],

leading to the diffusion approximation of
XVt
V :

dx =

(
−k−1

2
x2 + k1xAx− k2x

)
dt+ ε

√
k−1

2
x2 + k1xAx+ k2xdWt, x ∈ [0,∞), (6.5)

where ε = 1√
V

and Wt is a standard one-dimensional Wiener process.

It is not hard to check that solutions of (6.5) almost surely reach the extinction state 0 in finite

time, while solutions of (6.4) with positive initial data converge exponentially fast to the unique

positive equilibrium. Such a dynamical disagreement between deterministic and stochastic models is

often referred to as Keizer’s paradox [46], which is often formulated in terms of the chemical master

equation satisfied by the distributions of XV
t or

XVt
V (see e.g. [47, 76, 13]). Examining the QSD of

(6.5) bridges the dynamics of (6.4) and (6.5) (or more generally, (6.2) and the associated unperturbed

ODE ẋ = b1x− b2x2), and successfully resolve Keizer’s paradox. See Remark 6.1 for details.

Logistic BDPs. Let λ > µ > 0. Consider a continuous-time birth-and-death process (BDP) Y Kt on

the state space N0 with birth rates λKn = λn, n ∈ N0, and death rates µKn = n
(
µ+ n

K

)
, n ∈ N, where

K � 1 is the scaling parameter, often called the carrying capacity. The transition rates of
Y Kt
K is

given by

qK

(
n

K
,
n+m

K

)
=


µKn , m = 1,

λKn , m = −1,

0, otherwise,

whenever n ∈ N0 and n + m ∈ N0. By the law of large numbers and central limit theorem, for

sufficiently large K, the process
Y Kt
K stays close to solutions of the following SDE:

dx = (λx− µx− x2)dt+ ε
√
λx+ µx+ x2dWt, x ∈ [0,∞), (6.6)
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where ε = 1√
K

. The SDE (6.6) is the diffusion approximation of
Y Kt
K , and is in the form of (6.2).

Going back to (6.2), we let a(x) = a1x+ a2x
2 and b(x) = b1x− b2x2. Clearly, (H) is satisfied. Let

V be as in (1.4). Denote by Xε
t the solution processes of (6.2) and by T ε0 the associated extinction

time. Set x∗ := b1
b2

. Note that we have used the notation V for both the generalized volume and the

potential function. Its meaning should be clear in the context, and thus, no confusion shall be caused.

Theorem 6.1. Consider (6.2).

(1) For each ε, (6.2) admits a unique QSD µε with a density uε ∈ C∞((0,∞)).

(2) uε = Rε
εa e
− 2
ε2

∫ x∗
•

b
ads, where limε→0Rε = a(x∗)

√
− b′(x∗)
πa(x∗)

locally uniformly in (0,∞).

(3) For each K ⊂⊂ (0,∞), there are positive constants γ = γ(K) and ε∗ = ε∗(K) such that

sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥Pεµ[Xε
t ∈ •]−

[
e−λε,1t〈µ, αε,1〉µε +

(
1− e−λε,1t〈µ, αε,1〉

)
δ0
]∥∥
TV

≤ e
γ

ε2
−b1t, ∀t > 2 and 0 < ε < ε∗,

where αε,1 := ‖φε,1‖L1(uGε )φε,1 and 〈µ, αε,1〉 :=
∫∞

0
αε,1dµ satisfies limε→0〈µ, αε,1〉 = 1.

(4) Let w be a modulus of continuity. For each compact K ⊂ (0,∞), M > 0 and sequences {tε}ε,
{tε}ε in (0,∞) satisfying tε < tε for each ε, limε→0 tε = ∞ and limε→0

tε
ε e
− 2
ε2

∫ x∗
0

b
ads = 0,

there holds

lim
ε→0

sup
supp(µ)⊂K

sup
tε≤t≤tε

sup
f∈w[x∗]
‖f‖∞≤M

∣∣∣∣Eεµ[f(Xε
t )]−

∫ ∞
0

fdµε

∣∣∣∣ = 0.

(5) For any µ ∈ P((0,∞)) with compact support, Eεµ[T ε0 ] ≈ε εa1

b1

√
− π
a(x∗)b′(x∗)

e−
2
ε2

∫ x∗
0

b
ads and

limε→0 Pεµ
[

T ε0
Eεµ[T ε0 ] > t

]
= e−t for all t > 0.

(6) limε→0 ‖µε−Gε‖TV = 0, where Gε is a probability measure on (0,∞) whose density is propor-

tional to exp
{
b′(x∗)
a(x∗)

(•−x∗)2

ε2

}
.

(7) For any p ∈ [1,∞), limε→0Wp(µε,Gε) = 0, where Wp is the p-Wasserstein distance.

Proof. (1) See [10]. (2) It follows directly from Theorem A and Corollary B (1). (3) It follows from

Corollary E (1) and the fact limε→0 λε,2 = b1 (see [45, Theorem B]). (4) It follows from Theorem F.

(5) It is a direct consequence of Corollary D (1) and Theorem D (1).

(6) Denote the density of Gε by Gε(x) = 1
Zε
e−

V ′′(x∗)
ε2

(x−x∗)2

, where Zε is the normalization constant.

Fix 0 < δ0 � 1 and κ ∈ ( 2
3 , 1). Set Iε := (x∗ − εκ, x∗ + εκ) and Iδ0 := (x∗ − δ0, x∗ + δ0). Split

2distTV (µε,Gε) =

(∫
(0,∞)\Iδ0

+

∫
Iδ0\Iε

+

∫
Iε

)
|uε −Gε|dx.

It remains to treat the integrals.

By Corollary 4.1 and the tail of Gε, there exists γ1 > 0 (independent of ε) such that∫
(0,∞)\Iδ0

|uε −Gε|dx ≤ e−
γ1
ε2 . (6.7)
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Clearly, there is 0 < η � 1 such that V (x) − V (x∗) ≥
[
V ′′(x∗)

2 − η
]

(x − x∗)2 for all x ∈ Iδ0 . It

follows from (2) that∫
Iδ0\Iε

|uε −Gε|dx ≤
∫
Iδ0\Iε

Rε
εa
e−

2
ε2

[V−V (x∗)]dx+

∫
Iδ0\Iε

Gεdx

≤ C1

∫
Iδ0\Iε

1

ε
e
− 2
ε2

[
V ′′(x∗)

2 −η
]
(x−x∗)2

dx+

∫
Iδ0\Iε

Gεdx,

where C1 = 1 + supIδ0
a(x∗)
a

√
V ′′(x∗)

π . Note that there is γ2 > 0 (independent of κ and ε) such that

max

{∫
Iδ0\Iε

1

ε
e
− 2
ε2

[
V ′′(x∗)

2 −η
]
(x−x∗)2

dx,

∫
Iδ0\Iε

Gεdx

}
≤ e−

γ2

ε2(1−κ) .

Hence, ∫
Iδ0\Iε

|uε −Gε|dx ≤ 2C1e
− γ2

ε2(1−κ) . (6.8)

Since V ∈ C3((0,∞)), there holds

V (x) = V (x∗) +
V ′′(x∗)

2
(x− x∗)2 +

V ′′′(x∗)

6
(x− x∗)3 + o(|x− x∗|3), ∀x ∈ Iδ0 .

Then, ∫
Iε

|uε −Gε|dx =

∫
Iε

C2(x, ε)
1

ε
e−

V ′′(x∗)
ε2

(x−x∗)2

dx ≤

√
2π

V ′′(x∗)
sup
x∈Iε

C2(x, ε),

where

C2(x, ε) =

∣∣∣∣Rε(x)

a(x)
− ε

Zε
e

2
ε2

[
V ′′′(x∗)

6 (x−x∗)3+o(|x−x∗|3)
]∣∣∣∣ e− 2

ε2

[
V ′′′(x∗)

6 (x−x∗)3+o(|x−x∗|3)
]
.

Note that κ > 2
3 gives supx∈Iε e

2
ε2

∣∣∣V ′′′(x∗)6 (x−x∗)3+o(|x−x∗|3)
∣∣∣ → 1 as ε→ 0. This together with (2) and

the fact that ε
Zε

=
√
− b′(x∗)
πa(x∗)

implies that limε→0 supx∈Iε C2(x, ε) = 0. Hence, limε→0

∫
Iε
|uε−Gε|dx =

0, which together with (6.7) and (6.8) yields limε→0 ‖µε − Gε‖TV = 0. This completes the proof.

(7) Let p ∈ [1,∞). By [77, Theorem 6.15], Wp(µε,Gε) ≤ 2
1
p′
(∫∞

0
|x− x∗|p |uε(x)−Gε(x)| dx

) 1
p ,

where p′ is the dual exponent of p. It follows from (6) and the tails of uε (see Lemma 2.6) and Gε
that limε→0Wp(µε,Gε) = 0. �

Remark 6.1. We comment on Keizer’s paradox and its resolution by QSDs. Keizer’s paradox, in

terms of the diffusion process (6.2) and the associated unperturbed ODE

ẋ = b1x− b2x2, x ∈ [0,∞), (6.9)

refers to the long-term dynamical disagreement of (6.2) and (6.9) when they are used to model the

same system. More precisely, for any x0 ∈ (0,∞), solutions Xε
t and ϕt(x0) of (6.2) and (6.9),

respectively, with Xε
0 = x0 = φ0(x0) satisfy limt→∞Xε

t = 0 almost surely and

lim
t→∞

ϕt(x0) = x∗ exponentially fast. (6.10)
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However, from an observable’s viewpoint, (6.2) and (6.9) are well-matched because the same phe-

nomenon is observed over any reasonable periods when either of them is used. This is clearly seen

from Theorem 6.1 (4) (6) and (6.10) (being locally uniformly in x0 ∈ (0,∞)), which imply that

lim
ε→0

sup
x0∈K

sup
tε≤t≤tε

sup
f∈w[x∗]
‖f‖∞≤M

∣∣Eεx0
[f(Xε

t )]− f(ϕt(x0))
∣∣ = 0,

where K, tε, tε, w[x∗] and M are as in Theorem 6.1 (4). Intuitively, for the time scale tε ≤ t ≤ tε,

Xε
t is governed by the QSD µε, which is almost Gaussian and concentrated at x∗.

Remark 6.2. It is worth noting that the metastability in the chemical system (6.3) shares some

similarities in phenomena with that in equilibrium statistical mechanics, meaning that there exists a

state in which the process remains trapped over macroscopic time scales before moving to the state

with the lowest energy. But, they differ in mechanism.

For a closed chemical system whose mean-field model exhibits multiple stable equilibria, the concept

of metastability in its stochastic counterpart bears a resemblance to that in equilibrium statistical

mechanics. These systems exhibit noise-induced transitions among stable equilibria. In this scenario,

stationary distributions represent equilibrium steady states in which there is no reaction flux (more

precisely, reactions do not stop, but are balanced), and the equilibrium associated with their zero-noise

limit (if exists) can be regarded as “the state with the lowest energy”.

However, due to the fact that the reaction A→ C is assumed to be irreversible, the chemical system

(6.3) can be realized in an open system in which C molecules are constantly removed from the system

while A molecules are constantly supplied to the system. Noise-induced transitions occur from the

sole stable equilibrium to the extinction state 0, but there are no transitions back. The QSDs can be

seen as nonequilibrium steady states with fluxes in reactions, resulting in the eventual extinction of X

molecules.

These were more or less discussed in [76, Section 4], and pertain to the fundamental distinctions

between open and closed chemical systems.

6.3. Diffusion approximation of QSDs. We further examine logistic BDPs with the focus on the

distance between QSDs of XK
t :=

Y Kt
K and that of (6.6). This concerns the compatibility of the birth-

death process XK
t and the diffusion process (6.6) as models for the evolution of the same species, as

well as the diffusion approximation of QSDs.

It is well-established (see e.g. [62, 18]) that for each K � 1, XK
t admits a unique QSD µK on N

K .

In [17], the authors proved the following asymptotic of µK as K →∞.

Proposition 6.1 ([17]). The following hold.

(1) There is C0 > 0 such that ‖µK − GK‖TV ≤ C0√
K

for all K � 1, where GK =
{
GK

(
n
K

)}
n∈N

is a probability measure on N
K given by GK

(
n
K

)
= 1

ZK
e−

K
2λ ( nK−

b(λ−µ)Kc
K )

2

with ZK being the

normalization constant.

(2) For any p ∈ [1,∞), there exists Cp > 0 such that Wp(µ
K ,GK) ≤ Cp√

K
for all K � 1.

Proposition 6.1 (2) is not stated in [17]. But, it is a simple consequence of Proposition 6.1 (1),

the tails of µK given in the proof of [17, Theorem 3.7], and the control of Wasserstein distance by

weighted total variation distance (see [77, Theorem 6.15]).

We identify µK and GK with their natural extensions to probability measures on (0,∞). In par-

ticular, they are singular with respect to the Lebesgue measure on (0,∞).
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Recall that ε = 1√
K

. Denote by µK := µε the unique QSD of (6.6). As the total variation distance

between µK and µK is 1, we use somewhat weaker distances.

Theorem 6.2. The following hold.

(1) For any p ∈ [1,∞), limK→∞Wp(µ
K , µK) = 0.

(2) limK→∞ distKol(µ
K , µK) = 0, where distKol denotes the Kolmogorov metric.

We need some elementary results. Let GK be a probability measure on (0,∞) with density

GK(x) =
1

ZK
exp

{
−K

2λ
(x− (λ− µ))2

}
, (6.11)

where ZK is the normalization constant.

Lemma 6.1. The following hold.

(1) limK→∞
ZK

KZK
= 1.

(2) For each p ∈ [1,∞), limK→∞
∑
n∈N

∣∣ n
K − (λ− µ)

∣∣pGK ( nK )→ 0.

Proof. (1) Write

ZK =
∑
n∈NK

e−
K
2λ ( nK−

b(λ−µ)Kc
K )

2

+
∑
n∈NcK

e−
K
2λ ( nK−

b(λ−µ)Kc
K )

2

=: IK + IIK ,

where NK =
{
n ∈ N :

∣∣∣ nK − b(λ−µ)Kc
K

∣∣∣ ≤ 1

K
1
4

}
and NcK = N \ NK . Since IK ≥ 1 and

IIK ≤
∑
n>K

3
4

n∈N

e−
n
2λK

− 1
4 ≤ 2e−

√
K

2λ

1− e− 1
2λK

− 1
4

≤ 8λK
1
4 e−

√
K

2λ , K � 1,

where we used the fact that 1− e−x ≥ x
2 for 0 < x ≤ ln 2 in the last inequality, we find

IIK = o(IK) as K →∞ (6.12)

and ZK = IK + o(e−
√
K

4λ ) as K →∞.

Now, we treat ZK . Split

ZK =
∑
n∈NK

∫ n+1
K

n
K

e−
K
2λ (x−(λ−µ))2

dx+
∑
n∈NcK

∫ n+1
K

n
K

e−
K
2λ (x−(λ−µ))2

dx =: IK + IIK .

Noting that for x ∈
[
n
K ,

n+1
K

)
and n ∈ NcK , there holds

|x− (λ− µ)| ≥
∣∣∣∣ nK − b(λ− µ)Kc

K

∣∣∣∣− ∣∣∣∣x− (λ− µ)−
(
n

K
− b(λ− µ)Kc

K

)∣∣∣∣ ≥ 1

K
1
4

− 2

K
≥ 1

2K
1
4

for all K � 1, we deduce

IIK ≤
∫
{|x−(λ−µ)|≥ 1

2K
− 1

4 }
e−

K
2λ (x−(λ−µ))2

dx

= 2

√
2λ

K

∫ ∞
K

1
4

2
√

2λ

e−y
2

dy ≤ 2

√
2λ

K

∫ ∞
K

1
4

2
√

2λ

exp

{
− yK

1
4

2
√

2λ

}
dy =

8λ

K
3
4

e−
1

8λK
1
2 .

Then, it follows from

√
KZK =

√
K

∫ ∞
0

e−
K
2λ (x−(λ−µ))2

dx =
√
λ

∫ ∞
−
√

K
λ (λ−µ)

e−
x2

2 dx→
√

2πλ as K →∞
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that limK→∞
√
KIK =

√
2πλ and

IIK = o(IK) as K →∞. (6.13)

Note that if n ∈ NK and x ∈
[
n
K ,

n+1
K

)
, then

∣∣∣(x− (λ− µ))−
(
n
K −

b(λ−µ)Kc
K

)∣∣∣ ≤ 2
K , and thus, for

all K � 1,

exp

{
K

2λ

∣∣∣∣∣(x− (λ− µ))2 −
(
n

K
− b(λ− µ)Kc

K

)2
∣∣∣∣∣
}

≤ exp

{
1

λ

∣∣∣∣x− (λ− µ) +
n

K
− b(λ− µ)Kc

K

∣∣∣∣} ≤ exp

{
1

λ

(
2

K
1
4

+
2

K

)}
≤ exp

{
4

λK
1
4

}
.

As a consequence, we find from the mean value theorem that

IK =
1

K

∑
n∈NK

e−
K
2λ (xKn −(λ−µ))2

≤ 1

K
e

4
λK
− 1

4
∑
n∈NK

e−
K
2λ ( nK−

b(λ−µ)Kc
K )

2

=
1

K
e

4
λK
− 1

4 IK ,

IK =
1

K

∑
n∈NK

e−
K
2λ (xKn −(λ−µ))2

≥ 1

K
e−

4
λK
− 1

4 IK ,

where xKn ∈
[
n
K ,

n+1
K

)
for each n ∈ NK . Therefore, limK→∞

IK

KIK
= 1, which together with (6.12) and

(6.13) leads to limK→∞
ZK

KZK
= limK→∞

IK

KIK
= 1.

(2) Since ZK ≥ 1, we derive∑
n∈N

∣∣∣ n
K
− (λ− µ)

∣∣∣pGK ( n
K

)
≤
∑
n∈N

∣∣∣ n
K
− (λ− µ)

∣∣∣p e− K
2λ ( nK−

b(λ−µ)Kc
K )

2

≤ 2p
∑
n∈N

(∣∣∣∣ nK − b(λ− µ)Kc
K

∣∣∣∣p +

∣∣∣∣b(λ− µ)Kc
K

− (λ− µ)

∣∣∣∣p) e− K
2λ ( nK−

b(λ−µ)Kc
K )

2

≤ 2p
∑
n∈Z

(( n
K

)p
+

1

Kp

)
e−

1
2λK n

2

.

Note that for each n ∈ N and K > 0, there hold

1

K
e−

K
2λ ( nK )

2

<

∫ n+1
K

n
K

e−
K
2λ (x− 1

K )
2

dx,
1

K

( n
K

)p
e−

K
2λ ( nK )

2

<

∫ n+1
K

n
K

xpe−
K
2λ (x− 1

K )
2

dx,

It follows that ∑
n∈N

e−
1

2λK n
2

< K

∫ ∞
1
K

e−
K
2λ (x− 1

K )
2

dx = K

∫ ∞
0

e−
K
2λx

2

dx,

∑
n∈N

( n
K

)p
e−

1
2λK n

2

< K

∫ ∞
1
K

xpe−
K
2λ (x− 1

K )
2

dx

= K

∫ ∞
0

(
x+

1

K

)p
e−

K
2λx

2

dx ≤ 2pK

∫ ∞
0

(
xp +

1

Kp

)
e−

K
2λx

2

dx.
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Therefore,∑
n∈N

∣∣∣ n
K
− (λ− µ)

∣∣∣pGK ( n
K

)
≤ 2p(1 + 2p)K1−p

∫ ∞
0

e−
K
2λx

2

dx+ 22pK

∫ ∞
0

xpe−
K
2λx

2

dx

= 2p(1 + 2p)
√

2λK
1
2−p

∫ ∞
0

e−
x2

2 dx+ 22p(2λ)
p+1

2 K
1
2−

p
2

∫ ∞
0

xpe−
x2

2 dx

→ 0 as K →∞.

This completes the proof. �

Now, we prove Theorem 6.2.

Proof of Theorem 6.2. Recall that GK is a probability measure on (0,∞) with density GK given

in (6.11). Theorem 6.1 says that

lim
K→∞

‖µK − GK‖TV = 0 and lim
K→∞

Wp(µK ,GK) = 0, ∀p ∈ [1,∞). (6.14)

(1) Let p ∈ [1,∞). Note that Wp(µ
K , µK) ≤Wp(µ

K ,GK) +Wp(GK ,GK) +Wp(GK , µK). It follows

from Proposition 6.1 (2) and (6.14) that limK→∞Wp(µ
K , µK) = 0 holds if we show

lim
K→∞

Wp(GK ,GK) = 0. (6.15)

To show (6.15), we note that

Wp(GK ,GK) ≤Wp(GK , δλ−µ) +Wp(δλ−µ,GK)

=

(∑
n∈N

∣∣∣ n
K
− (λ− µ)

∣∣∣pGK ( n
K

)) 1
p

+

(∫ ∞
0

|x− (λ− µ)|pGK(x)dx

) 1
p

.

By Laplace’s method, limK→∞
∫∞

0
|x − (λ − µ)|pGK(x)dx = 0. This together with Lemma 6.1 (2)

gives (6.15).

(2) Due to Proposition 6.1 (1), (6.14) and

distKol(µ
K , µK) ≤ ‖µK − GK‖TV + distKol(GK ,GK) + ‖GK − µK‖TV ,

the limit limK→∞ distKol(µ
K , µK) = 0 follows if we show

lim
K→∞

distKol(GK ,GK) = 0. (6.16)

Denote by FGK and FGK distribution functions of GK and GK , respectively. Clearly,

FGK (t) =


0, t ∈ (0, 1

K ),
n∑

m=1

GK
(m
K

)
, t =

[
n
K ,

n+1
K

)
, n ∈ N,

By the definition,

distKol(GK ,GK) = sup
(0,∞)

|FGK − FGK | ≤ sup

{
sup

(0, 1
K )

|FGK − FGK | , sup
[ nK ,

n+1
K )

|FGK − FGK | , n ∈ N

}
.
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Obviously, limK→∞ sup(0, 1
K ) |FGK − FGK | = 0. Recall NK and NcK from the proof of Lemma 6.1. Note

that

sup
n∈N

sup
[ nK ,

n+1
K )
|FGK − FGK | = sup

n∈N
sup

[ nK ,
n+1
K )

∣∣∣∣∣
n∑

m=1

GK
(m
k

)
−
∫ t

0

GKdx

∣∣∣∣∣
≤

 ∑
n∈NK

+
∑
n∈NcK

∣∣∣∣∣GK ( nK )−
∫ n+1

K

n
K

GKdx

∣∣∣∣∣+ sup
n∈N

∫ n+1
K

n
K

GKdx.

It is easy to see that limK→∞ supn∈N
∫ n+1

K
n
K

GKdx = 0. The exponential tails of GK and GK ensure

that the sum over NcK vanishes as K → ∞. To treat the sum over NK , we set xK := b(λ−µ)Kc
K and

estimate for n ∈ NK , ∣∣∣∣∣GK ( nK )−
∫ n+1

K

n
K

GKdx

∣∣∣∣∣ ≤ Cn,K
ZK

e−
K
2λ ( nK−xK)

2

, (6.17)

where Cn,K =

∣∣∣∣1− ZK

ZK

∫ n+1
K
n
K

e
− K

2λ

[
(x−(λ−µ))2−( nK−xK)

2
]
dx

∣∣∣∣. Note that

sup
n∈NK

sup
x∈( nK ,

n+1
K )

∣∣∣∣−K2λ
[
(x− (λ− µ))2 −

( n
K
− xK

)2
]∣∣∣∣

≤ K

2λ
sup
n∈NK

sup
x∈( nK ,

n+1
K )

{∣∣∣x− n

K
+ xK − (λ− µ)

∣∣∣ · ∣∣∣x− n

K
+
n

K
− xK + xK − (λ− µ) +

n

K
− xK

∣∣∣}

≤ K

2λ

2

K

(
2

K
+

2

K
1
4

)
→ 0 as K →∞.

This together with Lemma 6.1 implies limK→∞ supn∈NK Cn,K = 0. Hence, we see from (6.17) that

lim
K→∞

∑
n∈NK

∣∣∣∣∣GK ( nK )−
∫ n+1

K

n
K

GK(x)dx

∣∣∣∣∣ ≤ lim
K→∞

sup
n∈NK

Cn,K × lim
K→∞

∑
n∈NK

1

ZK
e−

K
2λ ( nK−xK)

2

= 0.

This proves (6.16), and completes the proof of the theorem. �
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11. P. Cattiaux and S. Méléard, Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on

non-extinction. J. Math. Biol. 60 (2010), no. 6, 797-829.

12. T. Chan, Large deviations and quasi-stationarity for density-dependent birth-death processes. J. Austral. Math.

Soc. Ser. B 40 (1998), no. 2, 238-256.

13. P. Childs and J. P. Keener, Slow manifold reduction of a stochastic chemical reaction: exploring Keizer’s paradox.

Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 6, 1775-1794.

14. N. Champagnat and D. Villemonais, Exponential convergence to quasi-stationary distribution and Q-process.

Probab. Theory Related Fields 164 (2016), no. 1-2, 243-283.

15. N. Champagnat and D. Villemonais, General criteria for the study of quasi-stationarity. Electron. J. Probab. 28

(2023), Paper No. 22, 84 pp.

16. N. Champagnat and D. Villemonais, Lyapunov criteria for uniform convergence of conditional distributions of

absorbed Markov processes. Stochastic Process. Appl. 135 (2021), 51–74.
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